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EXERCISES 1.2 1

CHAPTER 1

EXERCISES 1.2

The solution is x == 2/3.

The solution is & = —5/14.

Since x2 4 22 — 3 = (z + 3)(x — 1), solutions are z = —3 and =z = 1.

Since 1222 + 11z — 5 = (3z — 1)(4z + 5), solutions are z = 1/3 and = = -5 /4.

Since the discriminant 52 — 4(2)(10) = —55 is negative, the equation has no real solutions.

104 /100 —4(-4)(9) ~10+v244 5+ 61
-8 = ‘

4

Quadratic formula 1.5 gives z =

Since 22 + 8z -+ 16 = (z + 4)?, the solution is = —4 with multiplicity 2.
Since 422 — 36z + 81 = (2x — 9)?, the solution is # = 9/2 with multiplicity 2.
~5+ /25— 4(2)(-10) -5+ V105

4 4 '
Since the discriminant (—~8)% — 4(4)(9) = —80 is negative, the equation has no real solutions.
Since 28 — 322 + 3z — 1 = (x — 1)%, the solution is £ = 1 with multiplicity 3.
Possible rational solutions are &1, +1/2, +1/4, +1/8. We find that z = —1/2 is a solution. We factor
2z + 1 from the cubic,

83 +122% + 6z + 1 = (22 + )({dz? + 4z + 1) = (22 4 1)(2z + 1) = (2z + 1)°.

Quadratic formula 1.5 gives © =

The only solution is = —1/2 with multiplicity 3.

Possible rational solutions are 2 = +1, £2, +5, +10. We find that z = 2 is a solution. We factor & — 2
from the cubic,

28 — 222 + 52— 10 = (x — 2)(z* +5) = 0.

The other two solutions are complex.

Possible rational solutions are z = +1, +3, £9, but it should also be clear that no positive value of =
can satisfy the equation. We find that = = —1 is a solution. We factor x + 1 from the cubic,

2 4z + 1224+ 9=(z + D% +3z+9) =0.

Since the discriminant of the quadratic is negative, the other two solutions are complex.

Possible rational solutions are +1, +2, 44, 8, +16, £32, £64, but it should also be clear that no pos-
itive value of 2 can satisfy the equation. We find that x = —4 is a solution. We factor 2 + 4 from the
cubic,

2% 1222 + 482 + 64 = (x + 4)(a® + 8x + 16) = (z + 4)(z + 4) = (z + 4)°.

The only solution is z = —4 with multiplicity 3.

Possible rational solutions are +1, 2, +3, +4, £6, £9, £12, 4:18, £:36. We find that x = -3 is a
solution. We factor = + 3 from the guartic,

2t 4 72?4 92% — 212 — 36 = (x4 3) (2 + 42® — 3z — 12).

Possible rational zeros of the cubic are +1, +2, £3, +4, 46, £12. We find that = —4 is a zero. We
factor z + 4 from the cubic,

2+ 7% + 92% — 21z — 36 = (z + 3) (= + 4)(2% - 3).

The solutions are z = —3, —4, £v/3.
Since #? — 16 = (x2 4 4)(z? — 4) = (2? + 4)(z + 2)(z — 2}, the real solutions are x = +2.
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2 EXERCISES 1.2

Possible rational solutions are 41, 3, +5, +15, £1/2, £3/2, +5/2, £15/2. We find that x = -5 is a
solution. We factor z + 5 from the quartic,

22 + 92° — 62° —- 8z — 15 = (z + 5)(22° —2* — 2 - 3).

Possible rational zeros of the cubic are &1, +3, £1/2, £3/2. We find that z = 3/2 is a zero. We factor
2x — 3 from the cubic,

224 + 92% — 62% — 8z — 15 = (z + 5)(22 — 3) (2% + = + 1).
Since the quadratic has a negative discriminant, the only real solutions are z = -5 and z = 3/2.
Possible rational solutions are -1, 43, 49, +1/2, +3/2, +9/2, 4+1/3, £1/6. We find that = —1/2 is
a solution. We factor 2z + 1 from the quartic,

6z + 2% + 5322+ 92 — 9 = (22 + 1)(323 — z* + 27z — 9).
Possible rational zeros of the cubic are 1, 43, +9, £1/3. We find that = = 1/3 is a zero. We factor
32 — 1 from the cubic,

6zt + 2% + 5322 + 9z — 9 = (2 + 1)(3z — 1)(2% 4 9).

Since the quadratic has complex zeros, the only real solutions are 2 = —1/2 and z = 1/3.

No real numbers can satisfy this equation.

Possible rational solutions are +1, 42, 3, 44, 46, 4:8, £9, +12, +£18, +24, 436, £72. We find that
@ = 24 is a solution. We factor x — 24 from the cubic,

23— 2322 - 2z — 72 = (2 — 24)(z% 4- = 1 3).

Since the quadratic has a negative discriminant, the only real solution is x = 24.
Possible rational solutions are -1, 42, +£3, £4, 46, £8, +9, +12,+16, £18, +24, 432, 36, +48, 164,
+72, 496, £144, +192, £192, 4288, £576. We find that 2 = —4 is a solution. We factor = 44 from the
quartic,

2t — 4x® — 442% 4 962 + 576 = (= + 4)(2® — 8x% — 122 + 144).

Possible rational zeros of the cubic are £1, £2, 43, k4, 46, 1.8, +9, £12,+16, +18, 4-24, 136, £48,
+72, +144. We find that z = —4 is a zero. We factor z + 4 from the cubic,

2% — 423 — 4422 + 96z + 576 = (z + 4)(z + 4) (2% — 122 + 36) = (z + 4)*(z — 6)%.
Thus, £ = —4 and z = 6 are solutions, each of multiplicity 2.
Since 32! + 2% + bz? = 2%(32% + 2 + 5), and the quadratic has a negative discriminant, the only real
solution is 2 = 0 with multiplicity 2.

Possible rational solutions are +1, 42, +4, +5, £10, --20, 4£1/2, +5/2, +1/3, £2/3, £4/3, 15/3,
+10/3, £20/3, £1/6, £5/6. We find that z = 5/6 is a zero. We factor 6z — 5 from the cubic,

62> + 22 + 192 — 20 = (62 - 5)(a? + = +4).

Since the quadratic has a negative discriminant, x = 5/6 is the only real solution.

Possible rational zeros are +1, +3, £5, +£9, +15, k45, We find that z = —5 is a solution. We factor
x + 5 from the polynomial,

2%+ 5zt — 9z - 45 = (z + 5)(z* — 9) = (z + 5)(2? + 3) (2 - 3).

Solutions are z = -5 and = £/3.
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EXERCISES 1.2 3
Possible rational solutions are +1, +2, £3, +4, 15, £6, +8, £10,£12, 15, +20, 24, 430, 440, 60,
4+120. We find that z = 1 is a solution. We factor z — 1 from the polynomial,
25 — 1521 + 8523 — 22527 + 27da — 120 = (2 — 1)(z* — 14a® + 712® — 154z + 120).

We uge the same set of rational possibilitics for the quartic. We find that @ = 2 is a zero. When we
factor  — 2 from the quartic,

2® — 152 | 852° — 2252% + 274w — 120 = (z — 1)(z — 2)(x® — 122* 4 472 — 60).

Possible rational zeros of the cubic are +1, +2, &3, +4, 45, £+6, £10,+12, £15, £20, +:30, £60. We
find that z = 3 is a zero. We factor  — 3 from the cubic,

2® — 152 4 8523 — 22522 + 274z — 120 = (z — 1)(z — 2)(z — 3)(z* — 9= + 20)
= (z — 1){z — 2){z — 3){z — 4)(z - 5).

Solutions are therefore z =1, 2, 3, 4, 5.
Possible rational solutions are +1, &2, +4, £1/2, £1/4, but it should also be clear that no positive value
of z can satisfy the equation. We find that z = —1/2 is a solution. We factor 22 + 1 from the quartic,

dat + 42% + 1722 + 162 + 4 = (22 + 1)(22° + 2* + 8z + 4).

Possible rational zeros of the cubic are +1, £2, &4, £+1/2, and once again we reject the positive values.
We find that = —1/2 is a zero. We factor 2z + 1 from the cubic,

4zt +42% + 1722 + 162 + 4 = (22 + 1) (22 + 1)(z* + 4).

Thus, 2 = —1/2 is the only real solution and it has multiplicity 2.

Possible rational solutions are =1, 2, +4, +1/5, £2/5, +4/5, 1:1/25, +2/25, +4/25. We find that 2 =
2/5 is a solution. We factor 52 — 2 from the quartic,

2521 — 1202° + 1092° — 362 + 4 = (5z — 2)(5z® — 222% + 13z — 2).

Possible rational zeros of the cubic are &1, +2, +1/6, 4+2/5. We find that = = 2/5 is a zero. We factor
5z — 2 from the cubic,

250" ~ 120a° 4 1092 — 36z + 4 = (5z — 2)(bx — 2)(z” — 4z +1).

Thus, # = 2/5 is a real solution with multiplicity 2 and the quadratic formula gives the remaining two
solutions

REPERY, L SPPWY
Possible rational solutions are =+1, +2, +4, 45, 48, 410, £20, £25, +40, £50, £100, £200. We find
that =z = 1 is a zero. We factor 2 — 1 from the polynomial,
2%+ 972 4 472 + 12522 + 18z — 200 = (= — 1)(z* + 102% + 5722 + 182x + 200).

We use the same rational numbers for the quartic, but reject the positive values. We find that z = -2
is a zero. We factor x + 2 from the quartic,

2% 4 92 + 472% + 12522 + 18z — 200 = (z — 1)(z + 2)(z® + 82* + 41z + 100).

For zeros of the cubic we use —1, —2, —4, =5, =10, —20, —25, —-50, —100. We find that x = -4 is a
zero. When we factor it out,

2% 4 921 + 4723 + 12522 + 18z — 200 = (z — 1)(z + 2)(= + 4)(2® + 4 + 25).

Since the quadratic has a negative discriminant, the real solutions are x = —4, =2, 1.
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4 EXERCISES 1.3

Possible rational solutions are 41, 2:2, +3, +4, +6, 8, £9, £12, 416, +18, 24, £27, +36, 148, £54,
179, £81, 108, +144, £162, £216, +324, +432, 1648, £:1296. We find that x = 3 is a solution. When
we factor 2z — 3 from the polynomial,

28 4 162% — 8122 — 1296 = (z — 3)(z® + 32 4 2523 + 752® + 1442 + 432).

When we note that no positive value can satisfy the fifth degree polynomial, possible rational zeros are
1, -2, —3, -4, —6, —8, —9, —12, —16, —18, —-24, 27, —36, —48, b4, 72, —108, —144, —216,
—432. We find that z = —3 is a zero. When we factor z + 3 from the polynomial,

28+ 1627 — 8122 — 1296 = (z — 3)(z + 3)(z? + 2527 + 144).

Since there can be no real zeros of the quartic, the real solutions are z = +3.

2(z + 5}z — 1) 32. 2z — (3 + 065)/4)fz — (3 — v65)/4]
(x4 2)(x — 3){= — 10) 34, 24(z+5/3)(z — 1/4)(z — 1/2)
(x4 1)z —1)3 36. 16(z —1/2)%(z + 1/2)?

One polynomial is (z+1/3){z—4/5)(2z—3)(xz —~4)®. This polynomial could be multiplied by any constant.

According to the rational root theorem, possible rational zeros must be divisors of ap divided by divisors
of 1. This means that possible rational zeros are divisors of ao.

EXERCISES 1.3

With formula 1.10, the distance is V22112 = /5.

With formula 1.10, the distance is m = 3+/5.
With formula 1.10, the distance is \/m = 2/10.
With formula 1.10, the distance is /(=72 + (—3)% = v/b8.

With formula 1.11, the midpoint is (%—ﬁ, ﬁ;—‘i) = (2, —;—)

With formula 1.11, the midpoint is (_22+4, 1_5_?) _ (1,%)‘

With formula 1.11, the midpoint is (1 2_ 3, —2 2— 8) = (~2, —b).

3—-4 2-1 11
i ) A1, it i intis | —,~— ] =|—=,= ).
With formula 1.11, the midpoint is ( 5 g ) ( 5 2)
With slope —2/4 = —1/2, equation 1.13 gives 10. The line is horizontal.
1
y—2= —§(az~1) = z+2y =25 Its equation is y = —6.

Y Y

39
x

(1.2

B (6 56
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EXERCISES 1.3 b

11. With formula 1.13, the equation is 12. Witlé formlila 1.13, the equation is
y+3=3x+2) = y=3x+3. y+§:—§($41)z>m+2y+2=0.
Ay 4y

/ S~
// N T

¥

13. The equation of the y-axis is @ = 0. 14. The equation of the x-axis is y = 0.
15. With m = (3 — 0)/(4 + 2) = 1/2, equation 1.13 16, With m = {4 +2)/(0+ 1) = 6, equation 1.13
givesy = (1/2)(z +2) = 2y ==+ 2. gives y —4 = 6(z — 0) = y =6z +4.
Ay Ly

(4,3)
" s

17. With slope (0 + 3)/(1 — 0) = 3, equation 1.13 18. The midpoint of the line segment is
3-7 448
givesy —0=3x—1) = y=3z -3 —2Z,% =(-2,6).

With m = (6 — 0)/(—2 — 0} = -3, equation
1.13 gives y ~ 0= —3(z — 0) = y = —3z.

34 Y
(-7,8)
- e (34

/1 x >
X

19. Since slopes —~1 and 1 are negative reciprocals, the lines are perpendicular.

20. Since slopes of both lines are —1/3, they are parallel.

21. Since slopes of both lines are 1/3, they are parallel.

22. Since slopes —2/3 and 3/2 are negative reciprocals, the lines are perpendicular,

23. Since slopes are 3 and —1/2, the lines are neither parallel nor perpendicular.

24. Since slopes are 1 and —2/3, the lines are neither parallel nor perpendicular.

25. The lines are perpendicular.

26. Since slopes are —1 and 3, the lines are neither parallel nor perpendicular.

27. When we subtract the equations, y + 2y = 0+ 3 = y = 1. The point of intersection is (-1,1).
28. The point of intersection is {1, 2).

29. When we subtract 3 times the second equation from the first, dy + 18y = 6 — 9 —> y = —3/22. The
point of intersection is (24/11, —3/22).

30. When we substitute y = 22 4 6 into the sccond equation, z = (2z + 6) +4 = 2 = —10. The point of
intersection is (—10, —14).
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6 EXERCISES 1.3

When we substitute z = 2 — 2y/3 into the second equation, 2(2 — 2y/3) — y/d =16 = y = -132/19.
The point of intersection is (126/19, —132/19).

If we multiply the first equation by 5 and add the result to the sccond equation, we obtain 73z = 37 =
@ = 37/73. The point of intersection is (37/73,153/146).

, [3+4—1| 6 ) [1—6—3 8
Formula 1.16 e == e 34. Formula 1.16 gives ——— = —.
ormula gives JiTT 7 o1 g VT 75
i |5 —1— 4] ) |3+ 1] 4
Formula 1.16 gives ———— =0. 36. Formula 1.16 Lt LI V)
ormula gives T ormula gives it S
604+4+3 67
The distance is 7. 38, Formula 1.16 gives | 2_;5 JJ:4| = 7350

Since the point of intersection of the given lines is (3,1}, and the slope of z + 2y = 18 is —1/2, the
required equation is y - 1 = —(1/2)(x ~ 3} = x + 2y = 5. _

Since the slope of 2 —y = 4 is 1, and the point of intersection of 2¢ + 3y =3 and z —~y =4 is (3,-1),
the required equationis y+1=—-1{z —3) =— z4+y=2.

Since the slope of the line through (1,2) and (—3,0) is 2/4, the required equation is y — 6 = (1/2)(z: —
5) = 2y—=x+ 7.

Since the slope of the line through (—3,4) and (1, —2) is (4 + 2)/(—3 — 1) = —3/2, the equation of the
required line is y + 2 = (2/3)(2 + 3) = 2z = 3y.

Since |OA|| = |OB||, coordinates of A and B 44. When we equate slopes of line segments AC and

5
are (a,0) and (0, a), respectively. Since the ADB, =g = b= = _a 3
arca of AOAB is 8, it follows that Combine this with the fact that the area
(1/2)a? = 8 = a = 4. The equation of AOAB = (1/2)ab = 30, and we obtain a = 6
ofline ABisy=—(2—4) = z+y=4 and b = 10. The equation of the line is
y = —(5/3)(x — 6) = 5z + 3y = 30
Ho,a) conl
B(3,5)
7] * A0y * @) %
Since the slope of line segment AB is 2, 46. If the equation is y = ¢, then A = (¢,¢) and
and its length is 3, it follows that B = (4 —¢,¢). Since triangle ABD has area 9,
1
—bfa = 2 and va? + b? = 3. These can it follows that 9 = 5(2 —e)(4 — 2c),
be solved for a = —3/v/5 and b = 6//5. solutions of which are 5, —1. The
The equation of AB is y = 2z + 6/V/5. required equation is therefore y = —1.
ly h
B(0,5) \ Y
4 xty=4 y=x
D(2,2)
3 >
- =g X
A(a0) % 4 2 N

(a) The conversion equation is Ter = 5(Tr — 32)/9.

(b) The conversion equation is Ty = 97 /5 + 32

(c) They are one and the same line if we plot T along the horizontal axis and 7 along the vertical
axis (left figure below). If we plot T along the vertical axis and T along the horizontal axis in part
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{b), we obtain the right figure below.

T y
100 212F
. 32
52 212 T, P .
A v 00 7.

(d) If we set T = T in the equation from part (a), we obtain To = 5(T¢ — 32)/9 = 4T¢ = —160 —

T = —40.
{a) The conversion equation is Tx = 5(Tr — 32)/9 4 273.16.

(b) The conversion equation is T'r = 9(Tx — 273.16)/5 4 32.

{c} They are one and the same line if we plot Tr along the horizontal axis and Ty along the vertical
axis (left figure below). If we plot Tr along the vertical axis and T along the horizontal axis in part

(b), we obtain the right figure below.

Tx

/

-459.69 T -459.69

/2

/255.38

(d) If we set T = Tk in the equation from part (a), we obtain Tk = 5(T — 32)/9 + 273.16 == 4Tk =

2208.44 = Ty = 574.61.

(a) If the temperature is changed to T, the change
in the length of the bar is aLo(T — Tp), and
therefore its length is

L =Ly QLO(T — T()) = LO[]. + Cl!(]n — Tg)}
(b) The ends will be in contact when the rails
have length L = 10.003 m. This occurs when
10.003 = 10[1 + 1.17 x 107%(T — 20)] = T = 45.6.
Coordinates of E, the midpoint of side AC, are (2, 3).
Since the slope of BE is —1/2, the equation of
median BE isy —4 = —(1/2)a = 2+ 2y=2_8.
Similaily, equations for medians AD and CF are
Tx -y =0 and y = = + 2, regpectively. Line segments
AD and CF intersect in the point (4/3,10/3),
and this point also satisfies x + 2y = 8. Thus, the
three medians interscct at the point (4/3,10/3).
Coordinates of P, 2, R, and S are
P((z1 +22)/2, (g1 + y2)/2), Q{22 + 23)/2, (42 + ¥3)/2),

R((z3 + 24) /2, (ya + v4)/2), and S({(z1 + 24)/2, (y1 + ya)/2).

Slopes of the line segments PS, R}, P}, and RS
are, respectively,
(yz2—w)/2 (e -—9d/2  (-—y)/2 (ys—31)/2

(z2 — 24)/2  (mg—74)/2" (w3 —m)/2" (23— 21)/2

Ly
Ly(1-aTp)

L

B(04)

T T

X
Y Clay
g
R B (JC2 P g 2)
Dxany) <&

r
3 X

Al )

Since PS and R are parallel, as are PQ and RS, PQRS is a parallelogram.
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The midpoint of the line segment is (1, —1), and its slope is —3/2. The equation of the perpendicular
bisector is -+ 1 = (2/3}(x — 1) = 22 =3y + 5.
If coordinates of the point are (z,y), then (z—1)2+ (y—2)? = (z+1)2+(y—4)? and (z-1)* 1 (y~2)* =
(z + 3)* 4 (y — 1)2. When expanded and simplified, these reduce to 2 —y = =3 and 8z + 2y = -5, the
solution of which is (—11/10,19/10}).
Suppose two nonvertical, parallel lines have slopes m; and mg. Their equations can be expressed in the
form y = myx-+b; and y = maax+be. To find their point of intersection we set miz+b; = mgx+bs. Since
the lines do not intersect, there must be no solution of this equation. This happens only if m1 = ma;
that is, the lines have the same slope. Conversely, if two nonvertical lines have the same slope, their
equations must be of the form y = ma + by and y = mz + by, where by # bz. When we attempt to find
their point of intersection by setting ma + by = ma -+ by, we find that & = by, a contradiction. In other
words, the lines do not intersect.
Because triangles PT'() and PSR are similar,
ratios of corresponding sides arc equal,
1PQI _ [PT] _ 22— p D
N\PRi - |PSlI 2—a R
If we subtract 1 from each side of this equation,
\PQl_ _m—w

PR T ox—xy Feay) SGoy T
PR e —
L, IPQI-PRl _w—a o _mew 3
”PR” X — T il r—x
x . .
Thus, roz — 19Xy = &y — T —> T = %Z—E A similar proof gives the corresponding formula
1T T2

for the y-coordinate of K.

No. Definition 1.1 defines parallelism only for different lines.

We choose a coordinate system with the origin at one

vertex of the triangle, and the positive z-axis along ¥y Bp,c)
one side. The coordinates of the vertices are then
0(0,0), A(a,0), and B(b,c). Using equation 1.11,
coordinates of the midpoints of the sides are Q P

P(5525). o(43). #(30)

The sum of the squares of the lengths of the medians is

CORIE

= —2—((1.2 + 0% 4 ¢ — ab).

IOPI* + | AQI* + | BR]® =

Three-quarters of the sum of the squares of the lengths of the sides is
3 3 3
= (IOAW + |ABI? +10B%) = 7 {a® +[(b= 0)* + ¢ -+ (4" + ")} = 5(a® + b + & —a).

If we choose the coordinate system in the figure,
equations of AC and AB are y = —v/3(z — h/V/3) o
— 3z +y—h=0and y =3z -+ h/V3)

= 3z —y + h=0. If P(d,e) is any point

interior to the triangle, we can use formula 1.16 to B £
find the sum of the distances from P to the three Pl
sides

”PF“ + ”PD” + ”PE“ BCan30) F CUNT X
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EXERCISES 1.4A 9

|[V3d+e—h| |vV3d—e+h| 1 1
= — e+ =|v3d+e—h|+ =|V3d—e+hl|.
et e e e+ 5|V3dte i+ 51V3d — e+ il

Because P(d, e) is below and to the left of line AC, it follows that V3d+e—h < 0. Because P is below
and to the right of AB, v3d — e + h > 0. Hence,

1 1
WPF|| + ||PD| + | PEl = e+ 5(—\/:id —e-t h)+ 5(\/503 —e+h)y=h.

EXERCISES 1.4A

. This is the parabola y = 222 shifted 2. Factored in the form y = —(x — 3)(z — 1),
1 unit downward. the z-intercepts of the parabola are 1 and 3.
Its maximum is at © = 2.

¥y Y

T
/1 2 . x

-1 \/ 1 X
-1
. Factored in the form y = (x —1)?, 4. This is the parabola z = 4y?/3 shifted
the parabola has its minimum at (1, 0). 1/3 unit to the left.
Y by
}//
17 X
1 \ }\
1 x
. Factored in the form 2 = y(2 + y), 6. Pactored in the form y = —(= + 1){x — 4)/2,
the parabola opens to the right with z-intercepts of the parabola are —1 and 4.
y-intercepts 0 and —2. Its maximum is at « = 3/2.

. The parabola x = 1 — y? opens left with 8. Factored in the form 2 = —(2y ~ 5)(y + 1),
a-intercept 1 and y-intercepts +1. y-intercepts of the parabola are —1 and 5/2.
: Its maximum in the z-direction occurs
for y = 3/4.

\y -_.__~___‘_572-y
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Expressed in the form y = 4(z? + bz /4) + 10 10. This parabola opens to the right.
= 4(x + 5/8)% + 10 — 25/16

= 4(z + 5/8)? -+ 135/16, the parabola

opens upward with minimum at (—5/8,135/16).

Y Y

v
(-5/8,135/16) 10
Expressed in the form y = (2 — 6z 4+ 9) 12. This parabola opens to the left
= —(z — 3)?, the parabola opens downward and touches the y-axis at y = —4.
from the point (3,0).
Ay Ay

-9

/
2+ 4/4+20

(a} The y-intercept is —5, and z-intercepts are —§—+— =1+ 6.

(b) The a-intercept is 4, and from = = 4(y — 1)2, the y-intercept is 1.

The equation must be of the form y = az® 4 1. Since (2,3} is on the parabola, 3 = da+1=>a=1/2

The equation nwst be of the form z = 2-+ay?. Since (0,4) is on the parabola, 0 = 2+416a = a = —1/8.

Since the parabola crosses the z-axis at 2 = —1 and & = 3, it must be of the form y = a(z + 1)(z — 3).

Since (0, —1) is on the parabola, —1 = a(1)(-3) == a =1/3.

Since the parabola touches the z-axis at & = 1, it must be of the form y = a(z — 1)?. Since (0,2) is on

the parabola, 2 = a(-1)? = a=2.

Wesetz+1=1—-2° = 0=a2%+u 19. Weset 20 =142% == 0=22+22 11
= z{z +1) = z =0,—1. Points of = (z+1)2 = 2 = —1. The only point
intersection are (—1,0) and (0,1). of intersection is (1, 2).

[]

Y Y
]' 2/

2 4 1 x ¥ . i g
b
2l

2k
We set 2z — 22 —6 =5+ /5 = 21. Wesetyly —1) =y —1/2 = 2° —4y +-1=0.
522 — Oz + 55 = 0. With equation 1.5, With equation 1.5, y = (4 + /16 — 8)/4
z = (94 /81 — 4(5)(55))/10. Since = (24 v/2)/2. Points of intersection are
81 — 4(5)(565) < 0, there are no points (1 +v2)/2,(2 £ V2)/2).

of intersection.

Copyright © 2008 Pearson Education Canada



22,

24,

25.

26.

27.

28.

29,

EXERCISES 1.4A 11

Y y
5
[l 1 A L - 3-
-4 2 2 4 X ol
“Tot
201 = ] 3 x
at
Weset —y?+1=y?+2y—3 28, Weset 622 —2=2?+x+1=>522 —z—3=0.
— 0=2y+2y—4=20y+2)(y— 1) Equation 1.5 gives x = (1 £ /T +60)/10
== g = 1, 2. Points of interscction are = (1 + v/61)/10. Points of intersection are
(0,1) and (-3, —2). (1 \/"“)/10 (43 + 3/61)/25).

Y

S—
S T x/

The range of the shell is R = (v%/9.81)sin26. Since 0 < 8 < 7/2, range is a maxnnum when sin 26 =
1 = 260 =n/2 = @ = = /4 radians.

With coordinates as shown, the equation

of the parabola takes the form y = az? + 10.
Since the point (100, 50) is on the parabola,

50 = (10000)e + 10 = a = 1/250. When z = 70,
we obtain y = (70)2/250 + 10 = 148/5 m for the

-100 -70 00 %

length of the supporting rod.
We set bz = (2 —2)1 +4 = (2—2)* —5a+4 = 0 = 2* —82% + 242% — 372 + 20 = 0. Possible rational
solutions are +1, 12, +4, £5, +10, £20. One solution is x = 1, so that

21— 823 4+ 2422 — 372 + 20 = (z — 1)(z® — 72® + 172 — 20) = 0.
We find that = = 4 is a zero of the cubic, so that
gt — 82° + 242% — 372 + 20 = (z — 1)(z — 4)(2® — 3z -+ B).

Since 22 — 3z + 5 = 0 has no real solutions, the only points of intersection are (1 1) and (4,4).
With the coordinate system shown, the

equation of the parabola takes the form (312.4)
y = c(25/4 — 22). Since the point (3/2,4)
is on the parabola, 4 = ¢(25/4 — 9/4) =
¢ = 1. The arch is therefore 25/4 units
high.
5
2

If the parabola is to pass through these points, then

2=a+b+q 10 =9a—3b+c, 4d=9a+3b+e

The solution of these equations is a = 1/2, b= —1, ¢ = 5/2.
(a) Since resistances at temperatures 0°, 100°, and 700° are 10.000, 13.946, and 24.172,

10.000 = Ry(1), 13.946 = Ro(1 + 100a - 10 000b), 24.172 = Rg(1 + 700a + 490 000b}.

The solution of these equations is Rg = 10.000,
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12 EXERCISES 1.4B

a = 0.0042662, and b= —3.2024 x 1078, R
(b) The parabola is plotted to the right.
(c) The resistance is 20 ohms when

90 — 10(1 + T + bT?) = bT? +aT —1 = 0.
—a £ va?+4b 10

Since only the positive solution is acceptable,
T = (—a + Va2 + 4b) /(2b) = 304.
If P{a,b) is the point at which the rope meets
the parabola, the equation of the line PQ} is
y—4 =[(b—4)/(a —3))(z — 3). The z-coordinates (4
of points of intersection of this line with . 0(3.4)
the parabola are given by the equation
2 1= (ﬁ—g) (x—3)+4

T (128 a (2) 5o NP

22 _
o — a—3
Since the line is to meet the parabola in only one point, the discriminant of this quadratic must be zero

(A=4) -~ (3=8) - 0 = o-0r- 0t ema-sr0

20t

15F

Solutions of this equation are T' =

%00 300 500

b-i\

P(a,b)
1

a—3 a—3
Sinee P(a,b) is on the parabola, b = a® — 1, and when we substitute this into the above equation,
0= (a? ~ 5)2 — 12(® — 5)(a — 3) + 20(a — 3)? = a* — 12a° + 46a® — 60a + 25.

Possible rational solutions of this equation are £1, 45, +25. We find that @ = 1 is a solution. When it
is factored from the quartic,

0— o' 1203 + 46a% — 60a + 25 = (a — 1)(a® - 11a® + 35a — 25).
Once again a = 1 is a zero of the cubic, so that
0= a® — 1243 + 46a® — 60a + 25 = (a — 1)(a — 1)(a® — 10a + 25) = {(a — 1)*(a — 5)*.
Clearly, @ = 5 is inadmissible, and the required point is (1,0).

EXERCISES 1.4B

The circle is centred at the origin 2. The centre of the circle is (—5,2)
with radius 5v/2. and its radius is v/86.
¥ Y
6 L
L Lo 2 |
-6 6fx

6l
When we complete the square on the 2-terms, 4. When we complete the square on the y-terms,
(2 + 1)? + 3 = 16. The centre of the circle 22 + (y — 2)? = 3. The centre of the circle
is (—1,0) and its radius is 4. is (0,2) and its radius is V3.
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When we complete squares on a- and y-terms,
{(z —1)%2 4 (y — 1)? = 1. The centre of the circle
is (1,1) and its radius is 1.

21

1 s(1,1)

2 x

When we complete squares on z- and y-terms,
(z+2/3)% + (y — 1/3)% = 23/9. The centre of
the circle is (—2/3,1/3) and its radius

is v/23/3.

(-213,1/3)e

% R

-l/ix

. i x

. When we complete the square on the z-terms,

(24 3/2)% + y* = 59/4. The centre of the circle
is (—3/2,0) and its radius is v/59/2.

4

2 \
o, |

4 2

. When we complete squares on z- and y-terms,

(z +2)% + (y — 1)2 = 10. The centre of the
circle is (—2,1) and its radius is v/10.

2»
(2,0 Af

When we complete squares on - and y-terms, (z — 1)? + (y — 2)? = 0. The only point satisfying this

equation is (1, 2).

When we complete squares on z- and y-terms, (2 +3)2 + (y+ 3/2)% = —35/4. No point can satisfy this

equation.

With centre (0,0) and radius 2, the equation of the circle is 2?4y =4

Since the centre is (1,0) and its radius is 1, the equation of the circle is (z — 12 +y2 =1.

Since the centre is (3,4) and its radius is 2, the equation of the circle is (z — 32+ (y— 42 =4.

The figure indicates that the centre of the circle is (3/2, —3/2). Its radius is then /(3/2)% + (~3/2)* =
3/v/2. The equation of the circle is therefore (z — 3/2)% 4 (y + 3/2)* = 9/2.

If we take the equation of the circle in form 1.22, and substitute each of the points (3,0), (2,7), and

(_5:6)5
94+04+3f+e=0, 3f te=-9,
4+494-2f+7g+e=0, = 2f + Ty +e= —53,
25436 —-5f+6yg+e=0, —5f 4+ 6g +e=—61.
The solution of these equations is f = 2, g = —6, and e = —15. The equation of the circle is 22+ 4% +

22 — 6y — 15 = 0.
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14 EXERCISES 1.4B

If we take the equation for the circle in form 1.22, and substitute each of the points (1,3), (5,1) and
(21 _2)1

1+94+f+3g+e=0, f+3g+e=-10,
26+1+56f+g+e=0, = 5f+g+e=—-26,
44+442f-29+e=0, 2f —2g+e=-8

The solution of these equations is f = —14/3, ¢ = —4/3, and e = —4/3. The equation of the circle is
z? 4 y? — 142/3 —4y/3 - 4/3 =0o0r 322 + 3y* - 4z —dy —4 =0,

If @ and b are as shown in the figure, coordinates of b
the midpoint of the ladder are 2 = a/2 and y = b/2.
Since o and b always satisfy the equation a? + b? = L2,
it follows that
(22)2 + (2y)? =L = a?+y®=L*/4
Hence, the midpoint follows a quarter circle with
centre at the foot of the wall and radius L/2.
If we take the equation of the circle in the form {(z — h)? + (y — k)? = r*, and substitute the two points

B-m2+@ - K2=r  (1=hP+ (10— =12

When these equations are subtracted, the result is
0=(3-R2-(1—-h2+{d—k)?2-(-10-k? = h+Th=-18

(a) When the centre of the circle is on the line 2243y 416 = 0, we must also have 2h+3k+16 = 0. When
these equations are solved, k = —5 and k = —2. The radius of the circle is 7 = /(3 + 5)2 -+ (4 ++ 2) = 10.
(b) When the centre is on the line x + 7y + 19 = 0, we must have A + 7k +19 = 0. But this is the
same equation obtained from the two points. In other words, there is an infinity of circles with centres
on the line 2 + 7y + 19 = 0 passing through the points (3,4) and (1,--10). Any equation of the form
(w+ Tk +19)2 4 (y — k)2 =2, where 2 = (3 + Th + 19)* + (4 — k)? = 50k? + 300k + 500.

We set 22 + 2z + (3z + 2)2 =4 = 0 = 102% 4 14z = 22(5z + 7). Thus, 2 =0 and x = —7/5, and the
points are (0,2) and (—7/5, —11/5).

We set 22+ (1 —22)2 —4(1—2z) +1 =0 = 52 +42 -2 = 0. Solutions are z = (—4++/16 +40)/10 =
(—2 £ +/14)/5. Intersection points are ((—2 4 v/14}/5,(9 F 2y/14)/5).

We set 22 -+ (322 - 4)2 = 9 == 92 + 252° 4 7 = 0. But this is impossible since 92 and 252* are both
nonnegative. There are no points of intersection.

We set (24 3)2+16(z + 1) = 25 == 0 = 22+ 22z = 2(z -+ 22). Thus, 2 = 0 and v = —22. From z =0
we obtain the points (0, +4), while @ = —22 yields no points.

. ! . f 2 ) 2_f2 92 _ 1, 2 2
When we complete squares on - and y-terms, a:+§ + y+-§ _I+I_G_Z(“f + g* — 4e).

If f24¢%—de > 0, this equation represents a circle with centre (— /2, —g/2) and radius v/ f* + ¢* — de/2.
If f2 4 g% — 4e = 0, only the point (—f/2, ~g/2) satisfies the equation. If F? 4+ g% — 4e < 0, no points
can satisfy the equation.

If we choose a coordinate system with origin at the centre of the circle, the equation of the circle is
22 + 4% = r?. Let P(a,b) and Q(c,d) be any two points on the circle. The midpoint of line segment
P has coordinates ((a + ¢)/2, (b + d)/2). Since the slope of

Y
the perpendicular bisector of PQ is —(c -~ a}/(d — b}, the Plat)
equation of the perpendicular bisector is Lled) R

?__b'*"d—f c—a atec
v== = \a—/\"" 2 ) *
This line passes through the origin if and only if
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—¥=(;_?)) (—a;—c) e —(b+dd-b=(—a)atc) = a®+b®=c+d°

Since P and  are on the circle, it follows that a®4-b* = r? and ¢2+d? = r*, and therefore aZ+4+b? = ¢ ++d2.

If I is the brightness of the source at (100, 0}, then the amount of hght received at point (2, ) from this

kI
light is A; = o 100E T 7 where k is a constant of ()
proportionality. The amount of light received from the
50U t the origin is A k(IOI)
e ¢ » origin is
ree o gin 2= "l
For Al = Ag,
il _ L0k — 22 + y® = 10(z — 100)% + 10y°
10°

(z—100)2 +¢%  a22+4y?

2 5 6
— 92 +9y% — 2000z + 10° =0 = (Tgﬂgﬁ) +y = _;0 +1811= TR
We have a circle centred at (1000/9,0) and radius 100v/10/9.
If L is the loudness of the speaker at (0, 20), then the 1y
amount of sound received at point (z,y) from this speaker is 2008 ()
A, = kL x
22 4 (y — 20)%°

where k is a constant of proportionality. The amount of
sound received from the speaker at the origin is

 k(0.7L)
2T e
L e o
For A, = As, i _ L == 10(z® + y?) = 7[z® 4 (y — 20)%]. This gives

2 ¥ (- 207 10022 + )

140\* 2800 1402 28000
322 +3y% + 280y = 2800 => 22 + [y + — | = + 0% _ :
3 3 9 9
We have a circle centred at (0, —140/3) and radius 20v/70/3.

(a) The centre of the circle is the intersection

of the perpendicular bisectors of AR and AC 4y
(see Exercise 24). These perpendicular bisectors
have equations 4f €(24)
4 5 1 3 B(-3,3) D
y-2=-—(z+1), y—§=~§(w—§). 2
The solution of these equations is D(—3/7,22/7). A(l',])
F 2 Z x

The radius of the circumcircle is therefore

| ADI| = /TL0777 T (1577 = 5v/i3/7.

22\% 325
7) =&
(b) We take the equation of the circle in the form (z — )% + (y — k)® = #?. Since (1,1), (--3,3) and
(2,4) are points on the circle,

(Q—R2+1—kZ=r% (B3-h2+@B-kP=r% (@-R*+@-k)1’=

3\ 2
The equation of the circumcircle is (w + ?) + (y -

The solution of this system is h = —3/7, k = 22/7, and r = 5v/13/7, giving the same equation as in part
(a).
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16 EXERCISES 1.4B

Since the slope of BC is 1/5, the equation of ,
altitude AD isy—1=-5(z —1) = Sz +y =6
4t b <(2,4)

Since the slope of AC is 3, the equation of altitude

BEisy—3=—(1/3)(x+3) = =z + 3y = 6. The point B(-3,3)

of intersection of these altitudes is (6/7,12/7).

The equation of altitude CF is y — 4 = 2(z — 2), and 7 Ag,l)
the point (6/7,12/7) satisfies this equation. _ . ,
Hence, the altitudes intersect at (6/7,12/7). -4 2 2 X
The shortest distance occurs for the point

(@, b) on the circle where the line joining (h, k)
and (a,b) is perpendicular to the line. In terms
of slopes, this condition requires

(b—&)/(a— h)=BJ/A = b=Fk+ Bla-— h)/A. b Ax+By+C=0
Since (a, b) is on the circle, (a — h)? + (b— k)% = r2. %
These equations imply that

Ce-B)2 4 (y-k)2=r2

W+ |kt S e me(1+2) = A
(CL— ) + +Z(&*E)*k =7 :}(G.— ) +“X2' =7" = a= m
B
Corresponding y-coordinates are b=k & T The diagram indicates why there are two points.
A /AZ + B2

Using distance formmla 1.16, the minimum distance is the smaller of the numbers

|A(h+rA/VAZF BE) + B(k +rB/VAZ+ B2) + C|  |(Ah+ Bk + C) +v(A% + B?)/VA? + B?|

VA2+B2 ‘/A2+B2
_ |(Ah+ Bk + C) + rv/AZ + B?|
- VAT B? '
If (z,y) is the incentre, then it must be
equidistant from the three sides of the triangle, by
y=0,x=0,and z + 2y — 2 = {). When we equate 1

these distances, using formula 1.16, the result is

Iyl = || = |z + 2y — 2 _ |z + 2y — 2|
VEERZ VB "o

The equation |y| = |2} implies that y = +2. We
combine this with the two possibilities z+ 2y —2 > 0
and x -+ 2y — 2 < 0, for four possible cases. With y = 2 and 2 + 2y — 2 < 0, we obtain & = —(z +
2z — 2)/VB = 2 = (3 — v/5)/2. This gives the incentre ((3 — v5)/2,(3 - v5)/2)). Withy =z
and  + 2y — 2 > 0, we obtain z = (z + 2z — 2)/v6 = = = (3+ v5)/2. This gives the point
((3+v5)/2, (3+V5)/2)). With y = —z, we obtain the two additional points (1+ VvB)/2, —(1+V5)/2)
and ((1—+/5)/2,{v/5—1)/2). Three circles can be drawn to touch the sides of the triangle when they are
extended. The additional three points are the centres of these circles, but they are outside the triangle.

The amount of sound received at point (z, ) from the source at (z1,11) is A; = k1 /[(z—z1)2+{y—11)7],
where k is a constant of proportionality. The amount of sound received from the source at (zg,ys) is
Ay = kly/[(z — 22)? + (y — y2)?]. For 4, = A,
kI N kls
(-2 +(y-m)? (z- =)+ {y—p)

1 2 x

If we set o == I} /I, then

af(z — 22)? + (= 12)? = (@ —2)* + (y — 1)?

= (o 1)a?+ (e~ 1y* + 2z — azm)z + 2y — oye)y = o} — awh +y} — ays
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21— oxp \? yi—oge\® 2i—ond oy} | (ooozs\® | (m—ow’
— T+ —1] + y+T— = + + + o1

a—1 1 a—1 a—1 a—1

This is a circle if the right side is positive. Consider

2 2 2
r] —oax ] — iy 1
ooy () < hgpla- et - o) + (1 e
1
= m[a(m% — ax?) — (2% — azd) + (@7 — 20m123 + o”a3)]
o
s
With a similar result for the y-terms, we can write that
2 2
Ty — g 1 — QY _ 3 _ 2 B 2
($+ a—1 ) * (y—l— a—1 ) B (0541)2[(531 )" + (1 —y2))-
We have a circle centre | o2 Y172 ) and radius —a——[(ml —x9)2 4+ {1 — y2)?]. The
1-a ' 1o (@—1)2
equation of the line through (z3,y1) and (z2,¥s) is
_-v Yt
Y-t = —wz_&,l(:ﬂ ) = y m——'g_ml(:r z1) + 4.

If we substitute & = (21 — axy)/(1 — @) into the right side, we obtain

Yo — 1 T — o w2 — 1 T — Gy — T + o
y:J*z )1 1 2—1‘1)+y1:J2 (131 1 2 1 1)+y1
zo—21 \ 1—«a Lo — Ty 1-o
oy —u [alzn - 3) e o
—mz_ml[ T ]+y1—(y1 yz)(—l_a)wl
zayl—ay2+y1—ay1:y1—ay2
1—-o 1—a '

and this is the y-coordinate of the centre of the circle. Hence, the centre of the circle lies on the line
through (21,31) and (22, ¥2).

EXERCISES 1.4C
1. The ellipse is centred at the origin. 2. The ellipse is centred at the origin.

The z- and y-intercepts are £5 and 6. Its @~ and y-intercepts are z = +4/ VT
and y = +4/+/3.

aymy
AT \qﬁ
N A

\/

(1

. -anf3
3. The ellipse is centred at the origin. 4. The cllipse is centred at the origin.
Its z- and y-intercepts are & = £17 Its 2- and y-intercepts are » = +/7
and y = 4:3. and y = £/7/2.

N
N

<L

7

N

M

iz
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5. The ellipse is centred at the origin.
Its 2- and y-intercepts are 2 = £v/2
and y = +v/2/4.

s W
N

7. When we complete squares on 2- and y-terms,
@-17° (v 3°
44/9 4 7
The centre of the ellipse is (1, 3).
It intersects the line y = 3 when © = 1+ 2v/11/3,
and intersects the line 2 = 1 when y = 3 4 2/11.

EXERCISES 1.4C

6. When we complete squares on z- and y-terms,
(@4 1)%/4 + (y — 2)% = 1. The centre of the
ellipse is (—1,2). It intersects the line y = 2

when © = —3 and z = 1, and intersects the
linexz=—1 wheny =1 and y = 3.
Y
-1,2)e 2 >
3 3 T %
8, When we complete squares on z- and y-terms,
(z+2)2 (y+4% )
4 2 o
The centre of the ellipse is {—2, —4).
Tt intersects the line y = —4 when 2 = —4 and
z = (), and intersects the line & = --2 when
y=-4+2 >
“a ) %
2F

6L

9. If an ellipse of form z2/a® + y?/b* = 1 is to pass through the points (—2,4) and (3, 1), then

4 16
ZtE=h
These can be solved for a? = 28/3 and b? = 28.

With the coordinate system shown, the
equation of the ellipse must be of the form
2?/a? 4+ y? /% = 1. Since (0,4) and (2,7/2)
are points on the ellipse,
16 4  49/4
wh @t T
These imply that e = 256/15 and b* = 16. The

width of the arch is therefore 2a = 32/+/15.
We set 22 + 4a? =4 = 2 = +2/V/5.
Points of intersection are therefore

(£2//5, +2/V5).

10.

1,

11.

_/21:

9 1

Stm=1

4
/ (2,1/2)
. If we substitute y = = + 3 into the equation of

the ellipse, 1622 + 9(z + 3)? = 144, from which
0 = 252% + 54z — 63 = (x + 3)(252 — 21). Points

of intersection of the curves are (—3,0) and
(21/25,96/25).

=Y

-3
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13. If we substitute y = v3(z + 1)/2 info the equa-  14. Tf we put y = v/3(5 — 2)/2 into the equation
2

2
1 3
tion of the cllipse, 922 — 182 + 4 [% of the ellipse, 92% — 18z + 4 %(5 — a:)} =27,
== 27, from which 0 = 1222 — 12z — 24 = from which 0 = 122% — 48z + 48 = 12(z — 2)2.
12(2 — 2){z + 1). Points of intersesction are The line and ellipse therefore touch at the
therefore (2,3v/3/2) and (—-1,0). point (2, 3v/3/2).

=

e U

-3t 3F
15. We set 0 = 22 + 4ot — 822 = 22(42% - 7). 16. If we substitute y = 2% — 4 into the equation
Points of intersection are (0,0) and of the ellipse, z2 + 4(x? — 4)? = 4, from which
(EV7/2,7/4). 0 = 4a? — 312* 4 60 = (2% — 4)(42* — 15).

Solutions are z = +2, and ++/15/2. Points
intersection are (:E\/— /2,—1/4) and (:£2,0).

5 1 ] T % -

17. If a and b are as shown in the figure to the

right, then L2 = a? + b2, Let P(z,y) be the 000.5) 1
coordinates of the point on the ladder such J
that the ratio of the lengths ||P@|| and | PR, &
is 71 /1. According to Exercige 55 in Section 1.3, 5
™ma sz
&L= y W= -
r1+7ra 1+ Ty @) »
If we solve these for a and b and substitute ’
into the equation involving L, we obtain the equation of an ellipse
2 2 2 2 2
ry+ 7o 714 1o ) 9 2y L
z] | —y) =L = = ——.
( T ) ( ro y 7“1? T‘% (’J”l + ?‘2)2
EXERCISES 1.4D
1. Asymptotes for the hyperbola are y = 4, 2. Asymptotes for the hyperbola are y = *x,
intersecting at the origin. It intersects intersecting at the origin, The hyperbola
the y-axis at y = £1. intersects the z-axis at @ = +1.
. ¥ - . Y -~
iy N g - .‘\\__\ y=x. -~
T 1 ~p=x S o
. . - o~ \\- _/_.-"
e | o -
L £ T AT T 53
e,y ,//f T
o o px
/"/ ™ -~
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20 EXERCISES 1.4D

. Asymptotes for the hyperbola are y = 44z,
intersecting at the origin. It
intersects the z-axis at z = 1.

. Asymptotes for the hyperbola are y = £ v/10z,
intersecting at the origin. It intersects
the y-axis at y = +2v/5,

. When we complete squares on - and y-terms,

W+3? (@-3°
4 6

Asymptotes are y = —3 + (x — 3)/2 intersecting

in the point (3, —3). The hyperbola cuts

the line # = 3 when y = —1 and y = 5.

the equation becomes

. When we complete squares on z- and y-terms,
(y+1)2 B (z + 1)2 _q

5 4 -
Asymptotes are y = —1 + +/B(x + 1)/2 intersec-
ting in the point (—1,—1). The hyperbola cuts
the line £ = —1 when 5 = —1 + /5.

the equation becomes

\._*,,/ X
= -1
y=-1+/5( x+]-)f2,,. { U\\y:_]_\@(x_"])lz

o -,

4. Asymptotes for the hyperbola are y = +22/5,
intersecting at the origin. The hyperbola
intersects the y-axis at y = £2.

6. Asymptotes for the hyperbola are y = +v/32/2,
intersecting at the origin. The hyperbola
intersects the x-axis at x = £5/v/3.

-

8. When we complete squares on x- and y-terms,
@-1° @+2° _,

1 9/4
Asymptotes are y = —2 + 3{z — 1)/4 intersecting
in the point {1, —2). The hyperbola cuts
the line y = —2 when z = —1 and x = 3.

the equation becomes

y P
y=-243(x-1)/4 2

-

10. When we complete squares on z- and y-terms,

x4+ 1)°
etl)y 16) —(y—20 =1
Asymptotes are y = 2+ {x + 1)/4 intersecting
in the point {(—1,2). The hyperbola cuts
the line y = 2 when £ = -5 and x = 3.

the equation becomes

&= 2-(x+1)/4

.

/’/.- - -._‘\\ X
V24 (x+1)/4 &
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11.

12.

14,

18.

18.

EXERCISES 1.5 21

If we take the equation of the hyperbola in the form z2/a? — y?/b%* = 1 with asymptotes y = +ba/a,
then b/a = 4. Since the point (1,2) is on the hyperbola,

I TR P S G
a® P a? 1602 T4
Thus, b* = 16a® = 12, and the equation of the hyperbola is 162% — y* = 12,
If we substitute 2 = 2y into the equation of 13. We set 922 — 422 = 36 — z = +6//5.
the hyperbola, (2y)? — 2% =1 == y = +1/V2. Points of intersection are therefore
Points of intersection are therefore i(\/ﬁ, 1/ \/5) +(6/ \/5,6/ V5.
y @Ay
1 &
T 1 % ) 2 3 4 ;c
2
-1} \ -
-4}
The figure suggests that the line and 15, If we substitute ¥y = 1 — 2% into the equation of
hyperbola do not intersect. This can be the hyperbola, 322 — (1 — 2z)? = 3 from which
verified algebraically. If we substitute 0=—a2+4x —4=—(z—2)% The only
2 = 3y into the equation of the hyperbola, point of intersection is (2, —3).

36 = 9y? — 4(3y)? = —27y2, an impossibility.

T % T -\‘/x

If we substitute 2z = y? into the equation of the 17, If we substitute z = —y? into the equation of
hyperbola, 0 = (y%)? — 2(y*) ~ y* = y*(y* - 3). the hyperbola, 0 = (—y%)2 — 2(-¢*) —y* =
Thus, ¥ = 0, /3, and these give the points y2(y% + 1). The only point of intersection

of intersection (0,0) and (3, £v/3). is (0,0).

by

., * N

If we substitute (y — 1)? = 272/5 into the equation

of the hyperbola, 36 = 9(z — 1)* — 4 (%)

This equation reduces to G_y
0 =ha? — 222 — 15 = (x — 5){5z + 3). a}
2

Thus, & = 5 or = —3/5. Since & cannot be

negative (the equation of the parabola demands Sl 3 x
this), the solution 2 = 5 leads to the two points al
(5,14 3/3). 8l
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EXERCISES 1.5

1. Werequire 9 —22 >0 = 2?2 <9 — -3<z<3.

2. Since z — 2 cannot be 0, the function is defined for all z # 2.

3. The function is defined for all z # Q.

4. Since 22 — 4 must be positive, 2 must be greater than 2 or less than —2. Hence, |z| > 2.
5

. Since 4— 2 must be positive, 22 must be less than 4. This requires —2 < 2z < 2. We must also eliminate
x = 0.

6. The first two lines of the diagram indicate 4321012 34
when the expressions z2 — 4 and 9 — 22 are » e
positive and negative. The third line combines e, L. .J X
these to give the sign of (2% — 4)/(9 — z?). 9-x2 - + -

It indicates that  must be in one of the intervals (x2_4)/('§_}23 - 1[ - :I o
—J<z<-2o02<z<Ithatis, 2< 2| <3 000 -l —_————d L.

7. Since —x? + 6z — 9 = —(x® — 6z + 9) = —(z — 3)?, the function is only defined for z = 3.
8. Since 2% — 22 = 22(2 — 1) > 0 for z = 0 and = > 1, the largest domain consists of the point © = 0 and
the interval z > 1.

9. Since f(—z) =14+ (—a)% + 2(—a)* 10. Since f(—z) = (—2)® —(-z) = —2%+ =
=1+ 2%+ 22* = f(x), the function is even. = —(2° — z) = —f(=), the function is odd.
¥ PYd
1001
sol 32 1 i 5%
2 3 x 2t
11. Since f(—z) = 12(—2)% + 2(—z} = 1222 — 22, 12. Since f(—z) = (—z)!/5 = —21/® = —f(x),
and this is neither f(x) nor —f(z), the function is odd.
the function is neither even nor odd.
Ay v
1.—
3 /
2
1f T %
N P )
—z—1 z+1
13. Since f(—z) = ——:—-I—l = %, 14. Since f(—z) = (—z)* + (~2)? = —z% + 2%,
and this is neither f(z) nor —f(z), and this is neither f(x) nor —f(a),
the function is neither even nor odd. the function is neither even nor odd.
Ioliy Ly
4 1t

-2 -1 1x -2 -1 1 2x
ﬁ. A
-10L
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15.

17.

19,
20.

21.
22,
23.

24.
25.
26.

EXERCISES 1.5

Since f(—=z) = gf)(l ;E,J = — 3ajl|_ma|32 = —f(z), 16. Since the function is not defined for x <0,
the function is odd. it cannot be even or odd.
¥y ig
/ 8
1/2}
) 2 p) A% 4
-1z}
i T x
: (a4l 21 . (P V()
Since f(—x) = T ey 1-2ad flx), 18. Since f(—z) = 2 + 3(—a)?
2 fond 1
the function is even. _rAve bl f(z), the function is even.
28 + 3z?
y
4.
B | 2t
W -1t -‘i' -2 2 4 x

Even and odd parts of this function are fo(z) = 322 and f,(z) = z® — 2z.
Even and odd parts of this function are

—Txz

-2 —z—2 z? + 10 z—-2 -—z—2
fel@) = (a,+5+—$+5)ﬁ$2~25’ folw) = (3—#5 —m+5)#:1:2

Since this function is even, its even part is itself and its odd part is zero.
Since this function is odd, its odd part is itself and its even part is zero.

Even and odd parts of this function are

— 25"

6x

£() = 2 N —2z \ 1027 f(a;)~1 2z 2w\ _
3+5z  3—5r) 92522’ o T 9\345x 3—bz)

Since this function is only defined for z > 1, it does not have even and odd parts.
When we set 2 = 0 in equation 1.30b, f(0) = —f(0) = f(0) =0.
() Let f(z) and g(z) be any two even functions and set h{z) = f(z)g(z). Then,

h(—z) = f(~a)g(—z) = [f(@)llg(z)] = f(2)g(z) = h(z).

Thus, h(z) is an even function. The proof for two odd functions is similar.
(b) When f(z) is even and g{z) is odd, and h(:r;) = f(x)g(x),

h(—2) = f(-z)g(—a) = f(z)[-g(z)] = - f(z)g(z) = —h(z).

Thus, i{z) is an odd function.

Copyright © 2008 Pearson Education Canada
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27. 'This is a semicircle.

NI

-5 5 x
29, This is the lower half of the hyperbola
x? — 4% =5,
-5 Y \5
x
31. This is the upper half of the ellipse
4z% + y% = 5.
N
572 V512 x
33, Whenz >0, y =z + 22 = 3z;
and when e <G,y =~z + 2z ==,
by
4 3
2 -
m] 1 x
a2l

35. This is the lower half of the parabola

x = —y?

4

EXERCISES 1.5

- 28. This is a semicircle.

ry
5 V5

=Y

-5
30. This is the upper half of the hyperbola
2 —y? = 5.

¥

5 Vs E:
32. This is the lower half of the ellipse
4a:* + y* = b.

Ay
V52

-5
34, Whenz >0, y=o — 22 = —x;
and when 2 < 0, ¥y = —x — 2z = —3z.

Y

k\l’

I 1

2L
36. We rewrite the equation of the curve in the

form z = ¢°.
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EXERCISES 1.5 25

37. The curve is shown below. 38. This function is only defined for > 0.
¥ t+y
6 L
1 L
4 L
2t
39. The curve is shown below. 40. We multiply ordinates of the curves

y =z and y = vz + 1, the top half
of a parabola

y
S <
. . . . i - i x
3 - 1 ? x el
41. We multiply ordinates of the curves 42, We multiply ordinates of the curves
y = ¢ and ¢y = /22 — 1, the top half y = —x and y = v4 — 922, the top half
of a hyperbola. of an ellipse.
il
T . ] 2 X
43, We multiply ordinates of the curves 44. We multiply ordinates of the curves
y = z% and ¥ = v/4 — =, the top half gy = 22 and y = &2 — 4, the top half
¥
of a parabola. of a hyperbola.
“‘ y N
__"____h_:.;:_ 2l
4 - - ‘\4 X
45, We multiply ordinates of the curves 46. We draw the parabola y = z? —z — 12
y = z° and y = v/4 — 922, the top half = (z — 4)(z + 3) and turn that part below
of an ellipse. the 2-axis, upside down.
2 Y
T 1
Y /4 x
2 Z x N /’
3 3 R e
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47. This is the top half of the circle

(z - 1)? +y*=1.

y

49, This is the top half of the hyperbola

16(z — 1/4)? — 4% = 1.
by

T 2 X

-1 [ z *

51. Addition of ordinates of the curves

y =2z + 2 and y = \/z gives the curve.

y

53. Addition of ordinates of the curves

y =22 — 2 and y = |2| gives the curve.

EXERCISES 1.5

48.

50.

52.

54.

This is the top half of the ellipse
16(z — 1/4Y +4y* = 1.

y

=
T

X

1 1
b 2

If we set y = 2z - 22 — 4, square the
equation, and complete the squate on the
z-terms, the result is (z — 1)* +y* = —3. No
real values of 2 and y can satisfy this equation.

The square root /9 — 42? is defined only for
|z| < 3/2, whereas the square root V4a? — 9 is
defined for |z| > 3/2. The only points common
to these intervals are = +3/2. The graph
therefore consists of the two points (£3/2,0)

y

R | X

Since 1/(a% — 4) = 2% — 4|, we draw the

parabola y = 22 — 4, and then turn that part
of the parabola between £2 upside down.

Niwg
Ly

Y

55, We first draw the lower half of the parabola z = 3? — 1, shift it upwards 2 units (left figure below), and
then take square roots of ordinates (right figure below).

y
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EXERCISES 1.5
o

56. Since /(22 — 1)? — (22 — 1) = [2% — 1| - (2% — 1),
|z} > 1
X

it follows that
3;2—1)—(3:2—1)
lz| €1
1

f(ﬂ’) = {_(xz__l)_(m?l)
_Jo lz| > 1
Tl 201 —-22) |z <1,
-1

57. Every horizontal line that intersects the curve does so exactly once.

58. y = x2/9 is a stretch of y = 22 by a factor 59. y = z/5 is a stretch of ¥ = x by a factor of 5 in
of 3 in the z-direction. It is also a compression the z-direction. It is also a compression of y = z
by a factor of 9 in the y-direction. by a factor of b in the y-direction.

. A ) AV
; Yo
5, y=xf,r' 1k ’/"
* s ;—”’y;xf_j___
. 2r . f L Ptd n P
\\\ /,’ -2____.—-1'1‘_'-;’ 1 2 x
\\\\ ’l’,’ y=x2!9 //J— b
.-.--'-""-——:“- _.;_______/: _ ’/,
-2 -1 1 2 x -~ 2k
60. 22 + 16y? == 1 is a compression of z? + y2 = 1 61. z2 —4y? =1 is a compression of 2% — % =1
by a factor of 4 in the y-direction. by a factor of 2 in the y-direction.
y AY
,..-"]"--.._{2"‘.)’2:1 "
,"’ \\‘ |
I 4| x?416y2=]
-1|‘§_ ’l] X
u\\ - I"_,‘ Ak
B al
62. |z|+ |y/2| =1 is a stretch of |z + |y| =1 63. 22— (y/2+5)% =1 is a stretch of 2% — (y +5)* =1
by a factor of 2 in the y-direction. by a factor of 2 in the y-direction.
L 1 y 1 1
-2 -1 1 2 x
------ - =50

65, (z+2)2+y%> =4dis (z — 2)?+ y? = 4 reflected

in the y-axis.

y= 2% — 3% is y = 2% — 322 reflected

64.
in the y-axis.

Y=-x3-3x2
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28 EXERCISES 1.5

66. x =y + 2y is 2 =y — 2y reflected 87. = /=y is z = \/y reflected
in the z-axis. in the 2-aixs.
A
at at¥ -
2 2} 2=y
v P
| R
2 x=vy
4l
68. (a) (b)
y C
2 — 510} e
ey
it o—s 408} o—s
[
. 106} ot
3 -2 -] {2 Ix o—e
— 2041 o—s
Osalll
102} o—e
—0 .7 oty
—_— a4l 60 200 300 400 500 x

(¢) Let C(x) be the cost for mailing an item of z grams (0 < = < 500). When x/50 is an integer,
C{z) = 51(z/50). When z/50 is not an integer,

Clz) =51 (1 + integer part of =z

=) =51 (1 + |2/50]) = 511 +2/50).

69. This defines a function. 70. This defines a function.

¥y Y

\_/1 i

-1

71. This does not define & function. 72. This defines a function.
y Y
2 2t
w x
2 3 4 x
73. This does not define a function. 74. This does not define a function.
24 . . AY
2 T i %
— -
a2t -17 % X
-5
-4}
-5l
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77,

79.

81.

82.

EXERCISES 1.5 29

This defines a function. 76. This does not define a function.
1y
2 'y 3 1 4
1
2|
2 % 3
This defines a function. 78, This does not define a function.
y 4y
2 1}

AN S
RN

8 ~6\/—4 =) i
-1
This does not define a function. 80, This does not define a function.
\ Y by
4\
; /4
2 1 7 x

/

Graphs of s(t — 2) and s(t + 1) in the middle and right figures below are those of s(¢} in the left figure
shifted 2 and —1 units in the ¢-direction.
b3 (f) s(¢-2) 4 s(2+1)

| | ///\\\\\ ///l
] ) i 235 4 5 ¢5 2 I

g 1 2 3 '

Y

~Y

() Since the equation of the parabola is s = 4¢? and that of the line is s = —2(f — 3), the algebraic

0, t<0
- Co 482, 0<t<1
definition of the signal is s(t) = 23—1), 1<t<3"
0, t>3
(b) Graphs of s{t + 1/2) and s(t — 3) are shown below.
b SUH1/2) a4k 5(1-3)
R / i ) % i 2 3 4 5 6 1

(¢) The algebraic representations can be obtained by replacing ¢ by ¢ +1/2 and ¢ — 3 in s(t),
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84,

85,

86.
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0, t+1/2<0 0, t<—1/2
A+ 1/2)2, 0<t+1/2<1  Ja(t+1/2)2, -1/2<t<1/2
SEHYD =094 _1/2), 1<t+1/2<3 —|5-2t 1/2<t<5/2
0, t+1/2>3 0, t>5/2
0, t—3<0 0, t<3
4(t — 3)?, 0<t—-3<1 4(t—3)%, 3<t<4
s(t - 3) = 23-t+3), 1<t—-3<3  Y2(6—1), 4<t<6 "
0, t—-3>3 0, t>6

If 2 additional trees are planted, the number of
trees is 265 + @, and the yield per tree is 25 — 2/12.

The total yield for this number of additional trees is 60005
T
Y = f(z) = (255 + z) (25 - E) a000f
1
= ﬁ(255 + )(300 — z). 2000
To keep ¥ nonnegative, and not cut down any . )
100 700 300 x

trees, we restrict the domain of the function to

0 < z £ 300. The maximum on this parabola is halfway between its intercepts; that is, at x =
(300 — 255)/2 = 45/2. Thus, 22 more trees should be planted. (We do not suggest 23 trees, since an
extra tree would have to be purchased.) A
The area of the rectangle shown is A = 4ay.

When we solve the equation of the ellipse for the
positive value of y, the result is y = (b/a)va? — 22,
The area of the rectangle can therefore be expressed
in the form

4b
A=f(9«’)=T$Va2—$2, 0<z<a. v
. . . ; 10 L4+ 8 . .
From similar vertical triangies in the left figure below, 5 =g and this equation can be solved for

Sl [
L =48. Since L2 = 2?2 + 25, it follows that 1652 = 2% 4 25, or, § = f(x) = %20 To draw a graph

of this function, we return to the equation 1652 — 22 = 25. The graph is the upper half of this hyperbola
(vight figure below).

/ ts

The amounts of A and B used to produce
an amount x of C are 22:/3 and z/3, R

. 800
respectively. It follows that

R:k(20—-233) (40-%)

2
= ?k(;ao ~2)(120 ~2), 0 <z < 30.

=Y

The rate is a maximum at z = 0, 30
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88.

89.

90.
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To draw a graph of this function we begin with a graph of the parabola y = 1 — v?/c? in the left figure

below. It is shown only for nonnegative v since speed is never negative. To draw y = /1 — v3/c? in

the same figure, we take square root of ordinates on the parabola. To obtain y = 1/4/1 — v?/c? in the

right figure, we divide ordinates of y = 1/1 — v2/c? into 1. The final graph is a result of multiplying all

ordinates by the constant value mg.

¥ m
~~~~ y =12

1

my

~.

The graph suggests that as the speed of an object approaches the speed of light, its mass becomes

indefinitely large. Consequently, it is impossible to accelerate an object with positive rest mass to the

speed of light.

The depth d of the lowest corner of the square below the surface of the water is given by d = t/2. For

0 < ¢ < 42 (when the lower half of the square is being submerged), the area submerged at time ¢ is

A =d? = (£/2)? = t2/4 (left figure below). For 4v/2 < t < 8y/2 (when the top half is being submerged),
2

2
t
A:m-(«/ﬁ%) :~16+4\/§tm-4—.

A graph of the function A(¢) is shown in the right figure below.

A
4 d 15+
d Q)rface of Water 10k

pa 2y2
\ /Surface of Water sk

d
4 d n i 1 L L
T 4 6 8 10

If the distance between cars is d = 3v2/500,
then the number of cars per kilometre is
1 500 500000 q
3(1000) = -3—5;5(1000) =gz 2000t
It follows that the number of cars passing any ~000l
given point per hour is
. (500 OOO) v 500000 1000F

-y

3v
The graph indicates that ¢ is maximized for v = 50

The rope becomes taut when z = /256 — 81 = 5/7 and the box reaches the pulley when & =
V625 — 81 = 4y/31. Between these values of z, the left fisure below indicates that 22 = 2* + 81
and z+4 (9 — y) = 25. When we eliminate z between these equations, the result is 22481 = (16-+y)* =
y = —16 + /xZ + 81, the graph of which is shown in the right figure below.

3u? ’

5b 100 v

b Ly

8.

9-y z 6F

10
¥ al
L1

» 1 2r
¥ . .
X - 5 10 15 20 x
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91. 92.

—a-]

I

*-—0 -2
93. 94.
4 Fyig —o
y=-3x 8r
6 2 -—

\sz ir ] | 1 pi k] _;
2t 5

5 —

, L Y=-F * A
i R R T2 3 % —_— m

95. To disprove this statement, it is sufficient to give an example for which it is invalid. Suppose that
f(@) = z, g(x) = x, and x = 1.8. Then

LF(1.8) +g(1.8)] = {1.8+1.8] = |3.6] = 3,

whereas
| F(1.8)] + {g(1.8)] = [1.8] + [1.8] =1+1=2

96. If we solve the equation for r in terms of A,

the result is r = a—h‘ When A = 2b, r

N
h? —b il
a

r = 2a/+/3. By writing the function in the form
ah

r= Vhe — b2

a
_ _,
Ji-5&

we gee that as h increases, r decreases, and for

2b

large h, r is very close to a. k
EXERCISES 1.6

1. Since the function is increasing for all z, it 2. Since the function is increasing for z = —1,
has an inverse. When we solve y = 2z + 3 it has an inverse. When we solve y = vz 1+ 1,
for z, we obtain z = (y — 3)/2, and therefore for z, we obtain z = y? — 1, and therefore the
the inverse function is f~1(z) = (z — 3)/2. inverse function is f~*(z) =22 — 1,2 > 0.

-1

Hy
153 ]

o302
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3. Since horizontal lines y = ¢ > —1/4 intersect
the graph in two points, there is no inverse
function.

-1 x

5. Since horizontal lines intersect the graph of
f{x) in only one point, the function has an
inverse. When we solve y = 1/x for 2, we
obtain £ = 1/y. The inverse function is

fHx)=1/z.

7. Since the function is decreasing for 0 <z < 2,
it has an inverse. When we solve y = V4 — z2
for z, we obtain ¢ = /4 — 2. The inverse
function is f~1(z) = V4 — 2.

y

™~

9. Since the line y = 0 intersects the graph in
an infinity of points, there is no inverse
function.

4.

10.

Since horizontal lines intersect the graph of f(z)
in only one point, the function has an inverse.
When we solve y = (z + 5)/(2z + 4) for z, we
obtain 2 = (5 — 4y)/(2y — 1). The inverse
function is f~1(z) = (5 — 4x)/(2z - 1).

+y

5/4

Since f(z) is increasing for all @, the
function has an inverse, Because

x = [(y — 2)/3]"/3, the inverse function
is () = [(x - 2)/3]V2.

ya

7

Y

Because f(z) is increasing for all =, the

function has an inverse. Graphically, the
inverse function is f~H(z) =z for x < 0

and z/3 for z > 0.

(4
6,.

k\

o) ‘ 2
2k

Since horizontal lines y = ¢, 0 < ¢ < 1,
intersect the graph in two points, there is
no inverse function.

y
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Since the function is decreasing for z < 0, 12. Because f(z) is increasing for x > 1,
the function has an inverse. If we set it has an inverse function. If we write
y =2t 4+ 222 -+ 2, then (22)2 4+ 22242y =0, 22 - 22 (4 —y) =0, then
from which 2? = [-24+ /4 — 4(2 —y)]/2 z=[2+/4-4d—-y))/2=1L/y -3
= —1 =4 /gy — 1. Since 27 must be positive, Since x > 1, we must choose the positive sign,
we choose the positive root, in which case and the inverse function is f~1(z) = 1 + v — 3,
x = —+/—1 4 /¥ — 1. The inverse function x> 3.
is fYz)=—v-1++vz—-1, 2>2

ty ¥

3
2 . .
x 1 x

Since horizontal lines intersect the graph of 14. Since almost all horizontal lines that intersect
f(2) in only one point, the function has an in- the graph do so twice, there is no inverse
verse. When we set y = [(z + 2)/(x — 2)]°, then function.

(.’12 + 2)/(3' - 2) = y1/3) or, &+ 2 = y1/3($ - 2)1
from which z = 2(y'/% + 1)/(y"/% — 1). The
inverse function is f~1{z) = 2(2/3 4+ 1)/(=*/3 — 1).

¥ Y,
t‘f -3 I2 X
Since horizontal lines y = ¢ > 0 intersect the 16, Since horizontal lines ¥ = ¢ >> 0 intersect the
graph of the function twice, the function does graph of the function twice, the function does
not have an inverse. On the intervals x <0 not have an inverse. On the intervals @ < 0
and 2z > 0, it does have inverses. For = > 0, and z > 0, it does have inverses. For 2 > 0,
the inverse function is f~'(z) = /4, and for the inverse function is f~'(z) = 1/z'/4, and
z <0, the inverse is f~{z) = —2x1/4, for 2 < 0, the inverse is f~1(z) = —1/2'/4.
Y ‘ y
1 .
| T x -
x

Since horizontal lines y = ¢ > 2 intersect the graph

twice, the function does not have an inverse. On the Y
intervals x < —1 and 2 > -1, it does have inverses.

Weset y = 22422+ 3, or, 22 + 22 + (3 —y) = 0, and

solve for = [-2+£ /4 -4(3 — )| /2= -1+ Vy — 2. >

For x < -1, the inverse function is Ir

Ff~Yz) = —1 — Vo — 2, and when 2 > —1, the inverse . -
function is f~1(z) = ~1+ vz — 2. -l *
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EXERCISES 1.6

18. Because horizontal lines y = ¢ > 2 intersect the graph of
the function twice, the function does not have an inverse.
On the intervals & < 0 and 2 > 0, it does have inverses.
To find them, we set y = z* + 422 + 2 = (2% + 2)? - 2,
and solve for 22 + 2 = +4/y + 2, but only the positive
result is acceptable. Hence 22 + 2 = /y - 2, and therefore
2 = /¥ + 2 — 2. For 2 > 0, the inverse function

is f~'(z) = vVv2 +2— 2, and for 2 <0, the inverse

is fHz)=-vVVz+2-2

19. Because horizontal lines between y = 0 and y = 1 intersect
the graph twice, the function does not have an inverse. On
the intervals £ < 0 and 2 > 0, it does have inverses. To find
them, we set y = 22/(2? + 4), from which z* = 4y/(1 — y).
Square roots give x = £+2y/y/(1 —y). For <0, the
inverse function is f~*(z) = —24/z/(1 — ), and for

z > 0, the inverse is f~1(x) = 24/z/{1 — a).

20. Because horizontal lines y = ¢ > 0 intersect the graph of the
function twice, the function does not have an inverse. On
the intervals z < 0 and z > 0, it does have inverses. To
find them, we set y = 2?/(z? + 4), from which
z3 — ya? — 4y = 0. This quadratic in %2 has solutions
z? = (y + \/y% + 16y)/2, but only the positive root

is acceptable. Thus, z = :J:\/ (v + vy? + 16y}/2. The
inverse function for & > 0 is

(@) = /(@ + VET ¥ 162)/2, and for z < 0 the -
inverse is f~!(x) = f\/(.i': + va? + 16z)/2.

21, An example is the function f(xz) = 1. On no interval is f(z) one-to-one.
0, 2<0
22. The function f(x) = { z, 0<2z<1 (shown to the right)

1, z>1 1r

is one-to-one on 0 < x < 1, but on no other interval.

¥
2
%
y
l.
X
Ay
st
%
3 %

23. (2) From the given equation, a/(z 1 b) = r — ¢, from which 2 +b = a/(r — ¢). The inverse function is

FYr) = a/(r — e} — b. The function and its inverse are shown below.

¥ A

- L

hx]

]

e+

g

r

35

(b) From the given equation, a/(z2+b) = r—c¢, from which 22 4+b = a/(r —¢c), or, 2 = £\/a/{r —c) — b.

The inverse function is f~'(r} = +/a/(r — ¢} — b. The function and its inverse are shown below.
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X
ctalb

v ——

o
+
e
~

The demand function factors as f(r) = (r + a){r — 2a)?, and therefore its graph must be somewhat
as shown in the left figure below. It is decreasing from r = 0 to r = 2a for the following reasons.
First f(0) = 4a®. Secondly, when written in the form f(r) = 4a® — r?(3a — r), we see that because
r2(3a — r) > 0 for 0 < 7 < 2a, we must have f(r) < 4a® on this interval. The function therefore has
an inverse function for 0 < r < 2a. The domain of the inverse function is the range of f(r), namely,
0 < z < 4a3. We can sketch its graph (right figure below) by reflecting the graph of = f(r} in the line

T=T7T.
X
2d i3

-
4a3 ¥

The graph shows that f(z) has an inverse. To
solve y = 22/(1 + z)? for 2, we set
2? = (1 +2)% = (1 + 22 + 2%y 40f

2al”

4a3

=
(y — D2+ (2y)z +y = 0.
Solutions of this quadratic equation are

oo 2 EVW -y 1) oy VY - %

2(y — 1) y—1
Since & must be negative for all ¥ > 0, we choose x =
—Z
VE+ 1

#y+\/g: \/.y(]_*.\/g) _ _-\/g The
el - ES W B R E S

inverse function is therefore f~(z) =

EXERCISES 1.7

In questions 1-10 we multiply the degree measure by /180 to find the radian measure of the angle. The
answers are:

/6 2. /3 3. 3r/4 4. —xw/2 5. —5n/3

17w /4 7. 2x/5 8. 32w /45 9. 107#/60 10. —213x/180

In questions 11-20 we multiply the radian measure by 180/ to find the degree measure of the angle.

The answers are:
60° 12. —225° 13. 270° 14. 1440° 15. —150°

180/=° 17. —540/7° 18. 450/w° 19. —206.3° 20. 1980/7°

In each case, we divide the length of the arc by the radius 4 of the circle. The angles are (a) 1/2 radian
(b) 7/4 radians (c) 4/5 radian.

Since the height from the top of the transit to the top of the building is 30 tan 1.30, the height of the
building is 2 + 30 tan (1.30) = 110.1 m.

The height of the smaller building is 100 tan (3/5) = 68.4 m. Since the vertical distance from the top of
the smaller building to the top of the taller building is 100 tan (11/10), the height of the taller building
is 68.4 + 100 tan (11/10) = 2.65 x 10? m.
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EXERCISES 1.7 37

From the figure to the right,
the height of the flagpole is

20tan0.8 = 20.6 m.

Flagpole

The cosine law gives the length a of the third
gide of the triangle,

a2 =22 432223 cos(n/3) =7 = a=+7.
The sine law gives the angles,

sinB _ sin (7/3) e &nB = 3(\/?:/2),

3 a VT
from which B = 1.38 radians;
2(v/3/2)

sinC _ sin (7/3) s sinC— ,
2 a V7
from which €' = 0.714 radians.
This is a right angle-angled triangle. Since
sin A = 4/5, it follows that A = 0.927 radians. 3
From sin B = 3/5, we obtain B = 0.644 radians.

The cosine law for the triangle gives

o 5 g 61 —49 1
75 =5%4+6°—2(5)(6)cos A =3 cosA = 0
from which 4 = 1.37 radians. A similar calculation gives
B = 0.997 radians. Then ¢ =7 — A — B = (0.775 radians.

The remaining angle is
7w —m/6 — /5 = 197/30 radians. The sine
law gives the remaining two sides,

@ 4 4 sin (7/5)
= = ————= = 2.57.
sin (7/5)  sin (197/30) — sin (197/30) 57 a b
b 4 _ Asin(m/6) _,
sin (w/6) ~ sin (197/30) T sn(low/30) Z i s

To prove 1.44a we proceed as follows (the proof of 1.44b is similar):

_sin(A4B) sinA cosB+cosAsinD
tan (4 + B) = cos(A+B) cosAcosB—sinAsinB
sinAcosB cosAsinB

cos A cos B + cosAcosB _ tan A 4 tan B
cosAcosB  sinAsinB ~ 1-—-tanA tanB’

cosAcosB cosA cosB

To verify 1.45a, we set B = A in 1.43a,
sin(A+ A} =sinA cosA+cosAsind = sin24 = 2sinA cos A.

To verify 1.46a, set B = A in 1.43¢c. Then use the fact that sin? A + cos? A = 1 to derive 1.46b,c. To
verify 1.47, set B = A in 1.44.
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31. To derive 1.48b, we add 1.43a,b,
1
sin(A+ B)+sin(A-B)=2sindcosB = sinAcosB= E[sin (A + B) +sin(A — B)].

Verifications of 1.48a,c are similar.

32, fweset X = A+BandY = A—B, and solve for A and B, results are A = (X+Y)/2and B = (X-Y)/2.
If we substitute these into 1.48b,

— X-Y
sin(X;rY)cos(X Y):%(SinX+sinY) = sinX+sinY:23in(X;Y)cos( 3 )

2

Proofs of 1.49b,c,d are similar.
33. The amplitude is 3. 34. The period is =.

4
2a - ﬂ\7 X T \/ﬂ'x
-3k -1t ‘

35. The amplitude is 3 and the period is . 36. The sine curve is shifted #/4 units
to the left.

N nh s
BV RVARY VLV

37. The amplitude is 3 and the curve is 38. The period is w and the curve is
shifted /4 units to the left. shifted /8 units to the left.

NN NI/
YAVAVAREEVEY/AV

39. 'The period is , the amplitude is 3, 40. The amplitude is 4 and the period is 67.
and the curve is shifted # /8 units to the left.

y

NN NN/
J T VAAVA

e

\
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EXERCISES 1.7 39
41. The amplitude is 2, the period is 4,

42, The amplitude is 5, the period is 27 /3,
and the curve is shifted 2 units to the right. and the curve is shifted 7/6 units to the right.

\ /\ N,
VAN VARV RVA

43. The period is .

¥y

I
T

¥

44. The period is #/3.
4y

T

2
i

akie e

( x’
45. The cosecant curve is shifted

46. The cotangent curve is shifted
/3 units to the right. 7 /4 units to the left.

uh -l
- =

=¥

wf

Vo

4%7. We squarce ordinates of the tangent curve.

48. Since f(z) = |sinz|, we invert that
part of the sine curve below the z-axis.

Y y
1
-?-3 ’I%‘ X i i x ;
49. Since f(x) = |secx|, we invert that part 50, We invert the secant curve, double
of the secant curve below the z-axis. ordinates, and shift the curve vertically

5 units.

WLy
RN Vi
P |
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We double ordinates of the tangent curve 52. We reflect that part of the tangent curve
and shift vertically 4 units. to the right of the y-axis in the y-axis.
/ Y Y
/ / / /
g o x ~d i >
We invert that part of the cotangent curve 54. The period is 47 and ordinates
above the z-axis and change the period. are multiplied by 3.
I B P T | ¥
x
3».
2r o« w 2m %
e
(a) R=4269m (b) R=42.78m (c) For R = 42.78 when @ = /4 and / = 2, we must have

v? 1 1 2(9.81)(2) v? 8(9.81)
42,718 = —— | —= = = 1 .
=GR (\/2' YR T asipy | TV T

2(9.81)(42. .
Therefore, M —1=4/1+ 89 28 1). Squaring gives
v v
2 2
1 4(9.81)&42.78) n 4(9.81) 542.78) —14 8(9.31),
v v v
from which
4(9.81)2(42.78)%
—4(9.81)(42.78)v? .81)2(42.78)% = §(9.81)0* = = 20. .
{(9.81)( Yot + 4(9.81)°(42.78) 8(9.81)w* — w \/4(9.81)(42.78)+8(9.81) 02 m/s

One angle satisfying the equation is z = m/3 radians. All solutions can be expressed in the form
x =7/3-}2nx, 27 /3 + 2nm, where n is an integer. Following the lead of Example 1.38, these angles can
be combined in the form

T 4 1

5 + % + 2nw = w + -g-, n an integer.
There are no solutions of this equation.
One angle satisfying the equation is & == 2x/3 radians. All solutions can be expressed in the form
T = +27/3 + 2nw, where n is an integer.
One angle satisfying the equation is © = m/6 radians. All solutions can be expressed in the form
x = w /6 + na, where n is an integer.
If we divide by cosz, then tanz = 1. One solution of this equation is 2 = 7/4 radians. All solutions can
be expressed in the form 2 = w/4 + na, where » is an integer.
This equation implies that cosz = +1/+/2. One solution of cosz = 1/+/2 is w/4 radians and one solution
of cosz = —1/+/2 is 3r/4 radians. All solutions can be expressed in the form 2 = m/4 + nm/2, where n
is an integor.
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EXERCISES 1.7 41
One solution of this equation for 2z is 22 = 3n /4. All solutions can be expressed in the form

3 3 .
2z = :!:-—4E + 2nm = T = j:—-—TE 4 nmw, n an infeger.

8
One solution of this equation for 3z is 322 = —n/3. All solutions can be expressed in the form
32 = — +nmw == e + BT 1 an integer
T3 B ger
One solution of the equation sin 3z = 1/2 for 3z is 3z = m/6. All solutions can be expressed in the form

2
3m:ﬂi£+2fmr — m:£j;£+ ikl n an integer.

273 69 3°
One solution of this equation for 4z is 4z = 37 /4. All solutions can be expressed in the form

3m 3r  nmw .
dr=4— 42 - » = +£-— + —, n an integer.
x 4+ 7T T 16+2' integ
If sin 2z = sinz, then 2 sinz cosz = sinz == (2 cosz — 1)sinz = 0, and therefore gither sinz = 0 or
cosx = 1/2. Solutions of the former are z = nw, where n is an integer, and solutions of the latter are
x = kn/3 + 2nw, where n is an integer.

This a quadratic equation in sinz that can be factored (sinx — 2)(sinz + 1) = 0. Either sinz = 2 or
ginz = —1. The first of these is impossible, and solutions of the second are x = —/2 + 2nw, where n is
an integer.

This equation implies that cotz = -£1/+/3. One solution of cot & =1/ /3 is m/3 radians and one solution
of cotz = —1/ V3 is —7 /3 radians. All solutions can be expressed in the form z = £7/3 + nx, where n
is an integer.

If we square the equation, sin®z + 2 sinz cosx + cos?z = 1 = sinz cosz = 0. Solutions of this
equation are © = nw and ¢ = (2n-+ 1)7/2, where n is an integer. But only z = 2nm and @ = (4n+ Dr/2
satisfy the original equation.

{a) Using identity 1.49c, 71. (a)
2(t) = cos (440mt) + cos (3607t)
= 2 cos {4007t) cos (10nt).
(b)
(b) The graph in part (a) indicates minimum
and maximum amplitudes of 3 and 7.
If we set f(z) = 3sin3z + 3cos 3z = Asin(3z -+ ¢), and expand the right side,

3sin 3z 4 3cos 3z = A(sin 3z cos ¢ + cos 3z sin ).

This will be true for all x if we set Acos¢ =3 wila

and Asin¢ = 3. When these are squared and

added, 32 + 3% = A2 cos? ¢ + A%sin® ¢ = A% ,,/ o /
12 1z

If we choose A = 3v/2, then sing = 1/ V2 and

cos ¢ = 1/+/2. These are satisfied by ¢ = 7 /4. ¥
The amplitude is 3v/2, the period is 27/3, and the
phase shift is —w/12. 32
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If we set f(z) = 2sindz — 2cosdx = Asin (42 + ¢), and expand the right side,
2sin 4z — 2cosda = A(sin 4z cos ¢ + cosdx sin @),

This will be true for all x if we set Acos¢ =2 2wz}
and Asin¢ = —2. When these are squared and
added, 2% + (—2)? = A? cos® ¢ + A%sin® ¢ = A% /\ /\ ?%/
If we choose A = 2/2, then sing = —1/v2 and 3 o
cos ¢ = 1/+/2. These are satisfied by / o
¢ = —m /4. The amplitude is 2v/2, the period s

L.2v2

is 7/2, and the phase shift is 7 /16.

If we set f(z) = —2sinz + 2v/3 cosz = Asin(z + ¢), and expand the right side,
—2sinz + 2v/3cosx = A(sinz cos ¢ + cosz sin ¢).

This will be true for all z if we set Acos¢ = --2 4

and Asin¢ = 2v/3. When these are squared and added,

(=2)% + (2v/3)? = A% cos® ¢ + A?sin® ¢p = A% \ /\ /

If we choose A = 4, then sin¢ = +/3/2 and = [T\ [§
cos ¢ = —1/2. These are satisfied by ¢ = 27/3. 3 k)

The amplitude is 4, the period is 2,

and the phage shift is —27/3. -4k

If we set f(z) = —2sin bz — 2v/3cos 52 = Asin 5z -+ ¢), and expand the right side,
—2sin 52 — 24/3 cos 5z = A(sin 5z cos ¢ + cos bz sin¢).

This will be true for all z if we set Acos¢ = —2 at”

and Asin¢ = —2v/3. When these are squared and added, '

(—2)2 + (—2v3)2 = A% cos® ¢ + A%sin® ¢p = A%,

If we choose A = 4, then sin¢$ = —+/3/2 and \ e oo >
cos¢ = —1/2. These are satisfied by ¢ = —2x/3. s \ 15

The amplitude is 4, the period is 27 /5,

and the phase shift is 27 /15. 4P

This is simply done using equation 1.45, y

f(z) = (1/2) sin2z. The amplitude is 1/2, 121
the period is x, and the phase shift is 0. /
2
L-172
This can be done using equation 1.46a,
f(z) = —cos 2z = —sin (w/2 — 2z) = sin (2z — w/2).

The amplitude is 1, the period is =,
and the phase shift is 7 /4.
41

2

14¥

We expand cos 3z,

cos 3z = cos (2¢ + 2) = cos 2z cosz — sin 2z sinx

= (2 cos®z — 1) cosz — (2 sinz cosz)sinz = 2cos® x — cosz — 2 cos (1 — cos? z)

= 4 cos® 2 — 3 cosz.

We expand sin 4x,

sinda = 2 sin 2z cos 2z = 2(2 sinz cosz)(2cos’z — 1) = 8 cos® 2 sinz ~ 4 cosw sinw.
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We expand tan 3z, 2 tanzx
tan 3z = tan (22 + 2) tan 2z +tane 1 —tan’a +tanz
= » ) = =
1—tan2z tanz 1 2 tan?
1—tan?z
_ 2tanz +tanz —-tan®z  3tanwy —tan’z
 1-—tan®z —2tan’z 1 3tan’z
We use double-angle formulas on the right side,
i 2 si 2 ;2 in{x/2
sing  2sin(2/2) cos(x/2)  sin(x/2) tan (/2).

1+4+cosz 14[2cos?(x/2)—1] cos(z/2)}

. . T tan z + tan (w/4) tanz -+ 1
h * h £ y ( 3 —) = = N
We expand the right side, tan [z 4 1 T tanz tan(r/4) ~ 1—tans

If we set A coswz + B sinwz = R sin (wx + ¢), and expand the right side using identity 1.43a,

A coswz + B sinwz = R(sinwz cos ¢ - coswa: sin ¢).

This is satisfied if we set A = R sing and B = R cos¢. When these are squared and added, A% + B? =
R?, from which we choose R = VA?+ B2, With this, ¢ is defined by sing = A/VA?+ B? and
cos¢p = B/+/A? + B2

No. The two equations define the quadrant for ¢, but the equation tan¢ = A/B does not.

If we set 2 sin 2z cos 2z = cos 2z, then either cos 2z = 0 or 2sin 2z = 1. The first implies that 2z = (2n+
)7/2 = z = (2n++1)w/4, where n is an integer. The second implies that 2z = /6 2n=x, 57 /64 2nm,
where n is an integer. The only solutions between 0 and 2 are w/12, w/4, and 57/12.

If we use identity 1.49¢, 0 = cosz + cos3z = 2 cos 2z cosz. Hence, cos2z = 0 or cosz = 0. Solutions
of the first are defined by 2z = (2n + 1)%/2 = z = (2n + 1)x/4, where n is an integer. Solutions of
cosz = (} are {2n + 1)7/2. The only solutions between 0 and 2 are = /4 and /2.

If we use identity 1.49b on the left side of sindx — sin 22 = cos 3z, then cos3xz = 2 cos3x sinz. This
implies that cos3z = 0 or sinz = 1/2. The first gives 3z = (2n + 1)x/2 = z = (2n + 1) /6, where n
is an integer. The second gives x = 7 /6 + 2nm, 57 /6 + 2nw. Since the solutions m/6 + 2nm are contained
in the set (2n + 1)n/6, the full set of solutions is x = (2n + 1)w/6, (12n + 5)7/6. The only solutions
between 0 and 2 are 7/6 and 7/2.

If we square the equation,

sin?z 4+ 2 sinz cosz + cos®z = 3sinz cos’z = Jsin’zcos’z—2sinz cosz—1=0

= (3sinxzcosz+ 1)(sinz cosz—~1)=0 = sin2z=-2/3 or sin2z=2.

The second of these is impossible. From the first,
072974 2nw . [ —0.365 +nw
20 = { —2.412 + 2nw = v= { —-1214+nr ’

where 7 is an integer. Only z = —0.365 -+ (2n + 1)m, —1.21 + 2n satisfy the original equation. None of
the solutions are between 0 and 2.
If A, B, and C are the angles in a triangle, then A + B + C = w. If we take tangents of both sides of
this equation,

tan (A + B) + tanC

1 —~tan{A + B) tanC

If we expand tan (A + B),

tan A 4 tan B
_van A tan & = —tanC == tanA+4+tanB = —tanC } tan A tan B tanC,
1—tanA tan B

and this gives the required result.

=0 = tan(A+B)+tanC =0.
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1. Tan™'(—1/3) = —0.322
2. Sin—!(1/4) = 0.253
3. Sec™'(v3) =0.955
4. Csc™1(=2/v3) = —2n/3
5. Cot™'(1) = m/4
6. Cos™'(3/2) does not exist since the domain of Cos™ 'z is —1 <z < 1.
7. Sin~!(x/2) does not exist since the domain of Sin"'z is —1 <z < 1.
8. Tan™'(—1) = —7/4
9. sin (Tan~'V/3) = sin (7/3) = V3/2
10. tan (Sin"13) does not exist since the domain of Sin~'z is —1 <z < 1.
11. Sin™![tan (1/6)] = Sin~10.16823 = 0.169
12. Tan™![sin (1/6)] = Tan™'[0.165896] = 0.164
13. sec[Cos™'(1/2)] = sec(n/3) = 2
14. Sin~![sin (3x/4)] = Sin"{1//2] = /4
15. sin[Sin~1(1/v2)] = 1/v2
16. Sin~![cos (Sec™'(—v/2)}] = Sin~" [cos (—3n/4)] = Sin~'[-1/V2] = —-w /4

Since one solution is z = Sin~'(1/3) = 0.340, all solutions are 0.340 + 2n7 and 7 — 0.340 + 2n7, where
n is an integer. They can also be represented more compactly in the form

-
3

™ T
et (-2~ ~ 0.340) + 2nm = (4n + 1)m/2 % 1.23.

18. From the solution x = Tan™'(—1.2) = —0.876, we obtain 2 = nx — 0.876, where n is an integer.

19. One solution for 22 is 22 = Cos™!(1/3) = 1.23. All solutions are given by
2 = 41.23 + 2nw = z = #£0.615 + nw, n an integer.

20. One solution of cot 4z = —2.2 for 4z is 42 = Cot~1(—2.2) = 2.715. All solutions are given by

dp = 2.715+ nw = z = .679 4 n%’ n an integer.

21. One solution of sin {1 — &) = 0.7 for 1 — zis 1 — z = Sin~'(0.7) = 0.7754. All solutions are given by

—

7 T T n
o Y —1_2 Z_o _ - —0. . — 2nm,
x 5 + (2 07754) + 2nmw — =1 5 + (2 07754) 2nm 0.571 4- 0.795 T

where n is an integer.
22. One solution of tan 3z = —3.2/3 for 3z is 3z = Tan"'(-3.2/3) = ~0.8176. All solutions are given by

3v= 08176+nr — a=-0273+ % n an integer.

23. When weset 0 = 4 sin? z—2(1—sin?z)— 1 = 6 sin?x—3 = 3(2 sin® £—1), it follows that sinz = £1/v2.
Solutions are z = £7w/4 + nw = (4n & 1)w/4, where n is an integer.

24. Since 1 = 4sin®z + 2(1 — sin® z), we require 2sin® 2z = —1, an impossibility.

25. From this quadratic, cosz = (3+ /9 —4)/2 = (34 v/5)/2. We must choose cosz = (3 — V/5)/2. From
the solution z = Cos™![(3 — v/5)/2] = 1.179, all solutions are z = +£1.179 + 2nr, where n is an integer.

26. This quadratic equation in sin# has solutions sinz = (3 + /9 +20)/2 = (3 & v/29) /2. Because neither
of these numbers is between —1 and 1, there are no solutions to the equation.
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We square ordinates of y = Cse™ 'a, 28. We add ordinates of y = Vv Tan 'z and

and then shift vertically 2 units. y = VSec Lz
el Y V5 ¥
q+2 [ ﬁ | -
a4+ R =
2&.«. /Ty VTan'x
R o y=+Secly,
2 -1 1 2 % ! . : >

30. Since the domain of Sin™'2 is |z| < 1,
and that of Cse™ 'z is |2] > 1,
the function is defined only for x = 1.
Its graph is therefore two points.

We shift ¥ = Sin™ '« to the right
3 units.

Y d
o(1,m)

1 2/3 4 % ] i
e(-1,-m) -3F

Using equation 1.59, tang ~ 1 —=> ¢ = = /4 radians.
Using equation 1.59, tan¢g = —1/2 = ¢ = 2.68 radians.
Using equation 1.59, tan¢ = 3/2 == ¢ = 0.983 radians.
Using equation 1.59, tan¢ = 3 = ¢ = 1.25 radians.

nly
w

=Y

(XS]

Since the line is vertical, ¢ = /2 radians.

Since the line is horizontal, ¢ = 0.

Since slopes of the lines are —1 and 1, the lines are perpendicular.
Since slopes of both lines are —1/3, the lines are parallel.

Since slopes of both lines are 1/3, the lines are parallel.

Since slopes of the lines are —2/3 and 3/2, the lines are perpendicular.

Since slopes of the lines are 3 and —1/2, formula 1.60 gives

1/2
= Tan~! %(_—_-/172—)‘ = 1.43 radians.
Since slopes of the lines are 1 and —2/3, formula 1.60 gives
al 1+2/3 .
§ = Tan™'|————-—| == 1.37 radians.
T (—2/m)

The lines are perpendicular,

Since slopes of the lines are —1 and 3, formula 1.60 gives

# = Ta.n—l‘ 11 33’ = 1.11 radians.

The sine law applied to triangle OAB gives (sing)/l = (sinf)/L = sing = (I/L)sind.

¢ = Sin'[(I/L) sin ).
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Since 0 = tan? 2(sinz + 1) — 3(sinz + 1) = (tan®z — 3)(sinz + 1), it follows that tanz = +v/3 or
sinz = —1. The solutions of these equations are z = +x/3 + nw and & = —7/2 + 2nn7, where n is an
integer, but only x = na L w/3 satisfy the original equation.

If we square the equation, sin®2 + 2sinz cosz + cos?x = 1 = sinz cosx = 0. Solutions of this
equation are © = nw and & = (2n+1)7/2, where n is an integer. But only z = 2nw and @ == (dn -+ 1)x/2
satisfy the original equation.

This equation implies that sinz = +3r /4 + 2nm, whete n is an integer. But for no n are these values
between between +1. Hence, there are no solutions.

This equation implies that Sin™ 'z = 2nm + /3, where n is an integer. Since values of Sin 'z must lie
between —7/2 and 7/2, n must be zero. Thus, z = £v/3/2.

This equation implies that tanz = +3x/4 + 2nx. Therefore, 2 = Tan '(2nm + 3w /4) + mr where m
and n are integers.

From the equation, tan (22 + 4) = cos (2w — 5) = cosb. This implies that 22 + 4 = nx + Tan™"(cos 5),

from which z = :I:\/ na + Tan*(cos5) — 4 = +/n7 — 3.724, where n > 2 is an integer.

(a) Since Sin~ 'z is defined only for —1 <z < 1, and on this interval, the sine function is the inverse of
Sin 'z, it follows that f(z) = z. Its graph is shown to the left below.

(b) On the interval —n/2 < 2 < 7/2, Sin"'z is the inverse of sinz and therefore f(z) = = on this
interval. For /2 < 2 < 37w/2, f(2) = m — 2. Thesc define f(z) on the interval —7/2 < 2 < 37/2 of
length 2. Since sinx is 2x-periodic, so also is f{z), and the graph is shown to the right below.

¥ y
1y 2L -
yox Y=m-x
=-x-7
Ne Voo oo/,
1 lx X
y=x-2n
-1F -mi2

(a) Since Cos™ 'z is defined only for —1 < < 1, and on this interval, the cosine function is the inverse
of Cos™ 1z, it follows that f(z) = . Its graph is shown to the left below.

(b) On the interval 0 < # < m, Cos™ 'z is the inverse of cosx, and therefore f(z) = x on this interval.
For ~n < 2 €0, f(z) = —z. These define f(x) on the interval —7 < x < 7 of length 2z. Since cosz is
2w-periodie, so also is f{x), and the graph is shown to the right below.

ye=-x y=x

-1t -2m 27 x
If we expand R sin (22 + ¢) according to 1.43a and equate it to f(z), we obtain
R sin 2z cos ¢ + R cos 2z sin¢ = 4 sin 2z + cos 2z.

This equation is satisfied for all z if R and ¢ satisfy R cos¢ = 4 and Rsin¢g = 1. When these are
squared and added, the result is R? = 17. Consequently, R = V17, and

4 1
VIT Viva
The only angle in the range 0 < ¢ < 7 satisfying these is ¢ = 0.245 radians. Thus, f{x) can be expressed
in the form v/17 sin {2z + 0.245).

cos¢ = sin ¢ =
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If we expand R cos {3z + ¢} according to 1.43¢ and equate it to f(x), we obtain
I cosdz cosgp — R sindx sing = —2 gin 32 -+ 4 cos 3.

This equation is satisfied for all @ if R and ¢ satisfy R cos¢ = 4 and Rsing = 2. When these are
squared and added, the result is B? = 20. Consequently, R = 2\/5 and

2 .
cosdh = —, sing = —=.
¢ 7 ¢ \/g
The only angle in the range 0 < ¢ < 7 satisfying these is ¢ = 0.464 radians. Thus, f{z) can be expressed
in the form 2v/5 cos (3z | 0.464).
If we expand R sin (22 + ¢) according to 1.43a and equate it to f(x), we obtain

R sin2x cos¢ + R cos2zx sing = —2 gin 22 1 4 cos 2z,

This equation is satisfied for all z if R and ¢ satisfy R cos¢ = —2 and R sin¢ = 4. When these are
squared and added, the result is B2 = 20. Consequently, R = 2\/5 and

-1 )
cosp = —, sing = —.

b p e
The only angle in the range 0 < ¢ < = satisfying these is ¢ = 2.03 radians. Thus, f(z) can be expressed
in the form 2v/5 sin (22 + 2.03).
If we expand R cos (3z + ¢) according to 1.43c and equate it to f(x), we obtain

2 cos 3z cos ¢ — K sindz sing = —4 sin3z + § cos Jz.

This equation is satisfied for all 2 if R and ¢ satisfy R cos¢ = 5 and Rsin¢ = 4. When these are
squared and added, the result is R* = 41, Consequently, R = VA1, and

3 .
cos¢=ﬁ, Sln(ﬁ:\/_-ll_l-'
The only angle in the range 0 < ¢ < 7 satisfying these is ¢ = 0.675 radians. Thus, f(2) cen be expressed
in the form /41 cos (3z + 0.675).
We set () = Asin (wt + ¢) = A(sinwt cos ¢ + coswtsing) = f(t) + g(t)
= 4[cos wt cos (27 /3) — sinwi sin (2m/3)] + 3[sinwt cos (r/3) + coswt sin (7 /3)]

= (—2\/§ - g) sinwt + (—2 + %-3-) cos wi.
3v3

This will be true if we choose A and ¢ to satisfy Acos¢ = % —2v3 and Asing = 5 2.
When these are squared and added, the result is

A2 = (242\/5): (%_2)12542\6 —s  A=1/25-12V3.

3/2-2V3 . 3/3/2-2

and sing =
V25— 12v3 25 — 123
satisfying these is ¢ = 2.846 radians.

We set z(t) = A cos (wt + @) = A(coswtcos¢ — sinwtsing) = f(t) + g(t)
= 4[coswt cos (2m/3) — sinwtsin (2m/3)] + 3[sin wt cos (7/3) + coswtsin (7 /3)]

= (—2\/§+ g) sinwt + (~2 + %ﬁ) cos wi.

Hence, cos¢ = . The only angle in the interval —m < ¢ <7
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3
This will be true if we choose A and ¢ to satisfy Acosg = ¥ -2 and ~—Asing= 5~ 2V3.

When these are squared and added, the result is

2 2
AZ—(§2—\/§—2) +(g—2\/§) =25-12v/3 =— A=1/25-12V3.

Hence, cos¢ = M and  sing = 2v/3 —3/2
| V25 — 123 ' V25 - 1243

7 satisfying these is ¢ = 1,275 radians.
We set 2(t) = Acos (wt + ¢) = A(coswt cos ¢ — sinwtsing) = f(t) + g(t)
= 2(sinwt cos4 + coswtsin4) + 3(sinwt cos 1 + coswtsin 1)
= (2cos4 + 3cos1)sinwt + (2sind + 3sin 1) coswt.
This will be true if we choose A and ¢ to satisfy Acos¢ = 2sin4d + 3sinl  and —Asing =
2cosd 4 3cosl. When these are squared and added, the result is

A? = (2sind + 3sin1)? + (2cos4 +3cos1)? == A =+/13+12co0s3.

. The only angle in the interval —m < ¢ <

2sind + 3sin 1 . 2cosd + 3cosl
Hence, cos¢p = —pe—-—-—"non and sing =-—————w-—
13+ 12cos3 V13 +12cos3

¢ < 7 satisfying these is ¢ = —0.301 radians.
We set z(f) = Asin (wt + ¢) = A(sinwt cos¢ -+ coswising) = f(¢) + g(t)
= 2(sinwt cos 4 + coswt sin4) + 3(sinwt cos 1 + coswisinl)
= (2cos4 + 3cos1)sinwt + (2sind + 3sin 1) coswt.
This will be true if we choose A and ¢ to satisfy Acos¢ =2cos4+3cosl and Asing=2sin4d+
3sinl. 'When these are squared and added, the result is

A? = (2cosd + 3cos1)? + (2sind +3sin1)2 —> A= 13 + 12c0s3.

. The only angle in the interval —m <

2cos4 +3cosl 2s5ind + 3sinl

Hence, cos¢p= ——=—= and sing = ———m——o.
13+ 12cos3 V13 +12cos3

¢ < m satisfying these is ¢ = 1.270 radians.

We set a(t) = Asin(wt + ¢) = A(sinwt cos ¢ + coswising) = f(t) + g(t) + h(t)
= 5 ginwt -+ 4[coswt cos (m/3) — sin wi sin (7/3)] + 2[sin wt cos (7/4) + coswt sin (w/4)]
= (5 — 2v3 + V2) sinwt + (2 + V2) cos wt.

This will be true if we choose 4 and ¢ to satisfy Acos¢ =05 — 2/3++v2 and Asing =2+ V3.
‘When these are squared and added, the result is

A= (5-0F4VE @4 VE? = A=145+14/3- 205 - 4V6.

5_2V3+v2 and sing = 2+v2 . The only

V45 + 14v/3 — 2013 — 4V6 V45 4 14/2 — 203 — 46

angle in the interval —7 < ¢ < « satisfying these is ¢ == 0.858 radians.

We set z(f) = Acos (wt + ¢) = A(coswi cos ¢ — sinwtsing) = f(t) + g(t) + h(t)
= Bsinwt + 4[cos wt cos (7/3) — sinwt sin (#r/3)] + 2[sinwt cos (7/4) + coswi sin (z/4)]
= (5 — 23+ V2)sinwt + (2 + V2) coswt.

This will be true if we choose A and ¢ to satisfy Acosé=2-++v2 and —Asing=>5- 23+ V2.
When these are squared and added, the result is

The only angle in the interval —m <

Hence, cos¢ =

A2 = 24 V2 H(5-2v3+V2)2 = A:\/45+14\/§—-20\/§—4\/6.
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242 5-2v34+v2

and sing = -
V45 + 142 — 20/3 — 46 V45 + 14v2 - 20v/3 — 46

angle in the interval —7 < ¢ < 7 satisfying these is ¢ = —0.713 radians.

If we let x be the distance

from slider C to line OA, then

z=~Rsing and x=(L+ Rcos¢)tand.

BEquating these gives
Rsin¢ = (L + Rcos¢) tan @,

R i QS
S11 L
l

. The only

Hence, cos¢ =

from which tan@ = m.

Thus, 0 = Tan"l(M) .

L+ Reos¢

If z is the distance from A to
the foot of the tower, then I

h 3
== == — h
tan @ s and tang¢ -t

From these, l
x=hcotd —d and =z = hcotég.
Equating these gives

d
heotf —d=hcot¢ = cotd=cot¢+ W
Since # is an acute angle, we can write that
4= Cot"l(cotqi + %) .

The equation

8 = 6y coswt + ;@Esinwt = R sin (wi + ¢) = R sinwt cos¢ + B coswt sin¢

iz satisfied if R and ¢ satisfy

Rcosqﬁz:j—% and  Rsing = 6p.

When these are squared and added, R = 62 + v2/(w?L2). If we choose R = /B2 + v /(w?L?), then
Vo vo ngo

. to
— , sing = = e,
wI /0 +vi/(w2L?) /v + w?L26} ¢ VOEF 2 /(WPL?)  og T w2L263

Because vy > 0, it follows that cos¢ > 0, and we may take —m/2 < ¢ < 7/2. Since sin ¢ has the same
sign as fg, angle ¢ is in 0 < ¢ < #/2 when 8y > 0, and is in —7/2 < ¢ < 0 when 8y < 0. Now

b = sing wiLfy VUE + wiL203 _ wlfy
S cosd (oI + wPL203 Uy vy

We can write ¢ = Tan *(wLfy/ug) since principal values are between —m/2 and 0 when 6, < 0, and
between 0 and /2 when 8, > 0.

When w9 < 0, then cos¢ < 0 and ¢ is an angle in the second or third quadrant. If g > 0, then sin¢ > 0,
and ¢ is in the first or sccond quadrant. Hence, ¢ must be in the second quadrant. Since tan¢ < 0, the
formula for ¢ is ¢ = % + Tan™ ' (wLéy/vp). On the other hand, if §y < 0, then sin¢ < 0, and ¢ is in the
third or fourth quadrant. Hence, ¢ must be in the third quadrant. Since tan¢ > 0, the formula for ¢ is
¢ = —m + Tan™ Y (wLbo/vo).

cos¢ =
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The equation
Y = yo coswt + Z—U sinwt = B sin (wt + ¢) = R sinwt cos ¢ + K coswt sing

is satisfied if R and ¢ satisfy

U .
Rcosq{):;(], Rsing =1y

When these are squared and added, R? = 4 + v&/w?. If we choose R = VYE + vE/w?, then
' Yo _ Yo Yo . wio
N R TG R VI + ] g T W

Because vy > 0, it follows that cos¢ > 0, and we may take —7/2 < ¢ < w/2. Since sin ¢ has the same
sign as g, angle ¢ is in 0 < ¢ < 7/2 when yp > 0, and is in —n/2 < ¢ < 0 when yo < 0. Now

_ sing Wi VU Wiy wio

cos¢ o +wyd Uo v
We can write ¢ = Tan ™~ (wyo/u) since principal values are between —w/2 and 0 when 4o < 0, and
between 0 and 7 /2 when yo > 0.

When vg < 0, then cos¢ < 0 and ¢ is an angle in the second or third quadrant. If yo > 0, then sin¢ > 0,
and ¢ is in the first or second quadrant. Hence, ¢ must be in the second quadrant. Since tan¢ <0, the
formula, for ¢ is ¢ = 7 + Tan™"(wyo/ve). On the other hand, if yo < 0, then sin¢ < 0, and ¢ is in the
third or fourth quadrant. Hence, ¢ must be in the third quadrant. Since tan ¢ > 0, the formula for ¢ is
& = —m+ Tan L (wyo /vo).

If we expand A cos (wt — ¢) and equate it to f{z), we obtain

Ey
R+ (WL &)
This equation is satisfied for all ¢ if A and ¢ satisfy
FoR Eo (wL - 75)
132 L2
Vi (L~ g6) VE + (L~ 5)

When these are squared and added, the result is A? = E2. Consequently, A = Ep, and

sing =

cos¢h =

tan ¢

A coswt cos¢p + A sinwt sing =

[R coswt + (wL — L) sinwt] .
w(C

Acos¢ = , Asing =

_. 1
il , sing = wl— oo =
VR 4 (WL &) VR + (WL - )

Because R > 0, it follows that cos¢ > 0, and this is consistent with the demand that —7/2 < ¢ < m/2.
We could use the equation in sin¢ to define ¢, or we can also write that tan¢ = [wL — 1/(wC)]/R so
that ¢ = Tan~'{[wL — 1/{wC)]/R}.

If 5coswt = A(coswt cosm/6 + sinwt sinw/6) + 5(coswt cos ¢ — sinwt sin @), then

5:@+5(:os¢ and Ozi;-—SsinqS.

cos¢h =

These imply that (5 cos ¢)2 + (5sin ¢)2 = (5— V3A/2)2+ (4/2)?, from which 25 = 25 - 5v/3A+34%/4+
A%/4 — A =0 or A =5v/3. Since A must be positive, we choose 4 = 5v/3, in which case

V3

1
cos¢==_§ and sing = -

These require ¢ = 2% /3 + 2nm, where n is an integer.
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If 5coswt = A{coswtcos1 — sinwtsin 1) + 5(sin wt cos ¢ + coswi sin ¢), then
b= Acos1+ 5sin¢g and 0=—Asinl+ 5cosg.

These imply that (5sin¢)? + (5cos$)? = (5 — Acos1)? + (Asin1)?, from which 25 = 25 — 10A cos1 +
A% == A=0or A =10cos1. Since A must be positive, we choose A4 = 10cos 1, in which case

sing =1 —2cos®1 = —cos 2 and cos¢ = 2sinlcosl =sin 2.

From the second of these, we may write cos ¢ = cos (7/2 — 2). We conclude that ¢ = +(7/2 —2) 4 2nm,
where n is an integer. But, sin(7/2 — 2+ 2n7) = sin (7/2 — 2) = cos2, which is not true. Hence, we
must take ¢ = — (/2 — 2) + 2nw = 2+ (d4n — D)7 /2.
When 2 > 1, we set y = Csc™ &, in which case 0 < y < n/2. It follows that 2z = escy, and

1 1

= = giny.
£ csey

If we apply the inverse sine function to both sides of this equation, the result is
.1 1 N P
Sin™| = | = 8in" ' (siny) =y,
z

because y is in the principal value range of the inverse sine function. Hence, when = > 1,

Cse lz = Sinl(l) .
x

. . .of 1 1y
When 2 < —1, we again set y = Cse™'#, and obtain  Sin 1(—-) = Sin~ ! (siny).
X
But in this case the right side is not equal to y, because —m <y < —7/2. To remedy this, we note that
when —7 < y < —7/2, we may write siny = sin (—x — y). Since —m — ¥ is in the principal range for the
inverse sine function (—7/2 < —w — y < 0), it follows that

Sin—l(é) = Sin"(siny) = Sin[sin(—7 — y)] = -7 —y = -7 — Csc”'a.

Thus, Csc™ 'z = —n — Sin™}(1/2).
When 0 <z <1, we sct ¢y = Sin~ !z, in which case 0 < y < /2. It follows that x = siny, and because

sin? y + cos?y = 1, we have
cosy = +4/1 —siny = £/1 — 22.

Since y is an angle in the first quadrant, its cosine must be nonnegative, and therefore cosy = v/1 — 22
When we apply the inverse cosine function to both sides of this equation, we obtain Cos Ycosy) =
y = Cos™1v/1—<2% When —~1 < z < 0, we continue to set y = Sin~ !z, and once again obtain
cosy = v/1 — &2, because —7/2 < y < 0. Application of the inverse cosine function gives Cos™'(cosy) =
Cos™ 11 =22, but the left side is not equal to ¢ because y is not in the principal value range of the inverse
cosine function. This is easily adjusted by noting that with —m/2 < y < 0, we have cosy = cos{—y).
Hence,

Cos™(cosy) = Cos™[cos (—y)] = —y == Cos™ /1 — a2
that is, y = —Cos_lm_
When > 1, we set y = Sec™ 'z, in which case 0 < y < 7/2. It follows that = = secy, and

1
- = = cosy.
x  secy

If we apply the inverse cosine function to both sides of this equation, the result is

Copyright © 2008 Pearson Education Canada



76.

7.

78.

52 EXERCISES 1.8
afl -1
Cos (Z) = Cos™ “(cosy) =y,

because y is in the principal value range of the inverse cosine function. Hence, when 2 > 1,

Sec”lz = Cos"l(l) .
@

1
When z < —1, we again set y = Sec™ 'z, and obtain COS—I(E) = Cos™ *(cosy).

But in this case the right side is not equal to ¥y, because —7 < y < —7/2. To remedy this, we note that
when —7 < y < —7/2, we may write cosy = cos(—y). Since —y is in the principal range for the inverse
cosine function (/2 < —y < «), it follows that

Gos (1) = Cos™H(cosy) = Cos eos (-4)) = = 8ac™'5

that is, Sec™ 'z = —Cos™(1/z).
When z > 0, we set y = Cot™ ', in which case 0 < y < 7/2. Tt follows that = = cot ¥, and

1 1
- = = tany.
r coty

If we apply the inverse tangent function to both sides of this equation, the result is
1
Tanﬁl(u) = Tan"(tany) =y,
x

because y ig in the principal value range of the inverse tangent function. Hence, when x > 0, we can say
that Cot™*a: = Tan ™' (1 /z).

When z < 0, we again set y = Cot™ 'z, and obtain
1
Tan_l(-:g) = Tan™ ! {tany).

But in this case the right side is not equal to y, because /2 < y < m. To remedy this, we note that
tany = tan (y — m), and when 7/2 < y < 7, y — 7 is in the principal value range for the inverse tangent
function. It follows that

Tan_l(l) = Tan"(tany) = Tan"'[tan (y — x)] =y — w = Cot "'z — m.

Thus, Cot™'2 = 7 4+ Tan™!(1/x).

When z > 1, we set y = Sec ™2, in which case 0 < y < w/2. It follows that 2 = secy, and because
1 4+ tan®y = sec®y, we have tany = 4+/sec2y —1 = 22 —1. Since y is an angle in the first
quadrant, its tangent is positive, and therefore tany = vz? — 1. When we apply the inverse tangent
function to both sides of this equation, we obtain Tan™!(tany) = y = Tan~'v/2% = 1; that is, Sec ™'z =
Tan 1vx2 — 1.

When z < —1, we again set ¥ = Sec™ e, and obtain tany = vz2 — 1, because —7 < y < —7/2.
Application of the inverse tangent function gives Tan™!(tany) = Tan 'v2Z — 1, but the left side is
not equal to y because y is not in the principal value range of the inverse tangent function. This is
easily adjusted by noting that tany = tan (7 + y), and when —7 <y < —x/2, 7 + y is in the principal

value range of the inverse tangent function. Hence Tan™!(tany) = Tan ‘[tan(r +y)] = w +y =
Tan *vaz2 — 1; that is, y = —n + Tan"1y/2Z — 1.

When 2 > 1, we set 4 = Csc™ ', in which case 0 < y < /2. It follows that x = cscy, and because
1+ cot?y = esc?y, we have coty = Ly/esc2y—1 = ++4/22 —1. Since y is an angle in the first
quadrant, its cotangent is positive, and therefore coty = v/22 — 1. When we apply the inverse cotangent
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function to both sides of this equation, we obtain Cot™*(coty) = y = Cot ™' v/2Z — 1; that is, Cse™'a =
Cot ™ va? — 1.

When z < —1, we again set y = Csc 'z, and obtain coty = vz? — 1, because —7m < y < —7/2.
Application of the inverse cotangent function gives Cot™!(coty) = Cot™1v/z% — 1, but the left side is
not equal to y because y is not in the principal value range of the inverse cotangent function. This is
easily adjusted by noting that coty = cot (7 + vy}, and when ~# <y < —=w/2, m + ¥ is in the principal
value range of the inverse cotangent function. Hence Cot™!(coty) = Cot [cot{r+¢)) = 7+ y =

Cot 1v/22 —1; that is, y = —w + Cot ™' /22 — 1.

If we sot y = 2 Tan™! —14__—:;, then i i—z = tan? (y/2). When we solve this equation for z, the result is
tan® (y/2) —1  tan®(y/2) —1 2
H— = frn 2 —_ 2 = — B
&= w/2) T 1 o (3/%) gin® (y/2) — cos® (y/2) cosy
Because cosy = —x, it follows that y = Cos“l(——a:) = 7 — Cos™ !z, and the proof is complete.

EXERCISES 1.9

If logp (2 + %) = ~1, then 2 + 2 = 107! = & = 2 + 1/10 = —19/10.

If 10%% = 5, then 3z = log o 5 == z = (1/3) log, 5.

If logyy (22 4+ 224 1) = 1, then (x4 1)% = 10! =2 2 = —14 /10

If In (2® + 2z + 10) = 1, then 22 + 22 + 10 = ¢! = @ = [-2% /4 —4(10 — ¢)| /2. These are not real.

If 102" =100 = 102, then 5— a2 = 2 — & = +/3.

If 102" = 100 = 102, then 1 — 22 = 2. This equation does not have real solutions.

We write 1 = log;, [(z — 3)z], and take exponentials, 10 = (2 — 3)z = 0 =2%-32—-10= (z — 5)(z +
2) = ax =15, —2. Only z = 5 satisfies the original equation.

We write 1 = logyq [(3 — 2)2], and take exponentials, 10 = (3 — z)z = 0= z* - 3z + 10. This equation
has no real solutions.

If we take exponentials, z(2 —3) =10 = 0 =22 - 32— 10 = (z —5)(z +2) = 2 =5, —2.

We write logo [2% (2 —1)] =2 = 2%(z —1) =102 = 100 = 0 =2% — 2% — 100 = (x — 5)(z? + 4z +
20) = x = 5.

We write log, [z{z +2)] = 2 = z(z 4+ 2) = a? = 2% + 2z — a® = 0. Solutions of this quadratic
equation are 2 = (—2+ /4 +4a?)/2 = -1+ /1 + a2. Since z must be positive, only z = —1 -+ V1 + a?
is acceptable.

We take exponentials to obtain z{z+2) = a2 = 2?42z —a? = 0. Solutions of this quadratic equation

are z = (—2++v4+4a?)/2= -1+ V1 +a2

Taking exponentials gives log,, (%%f) +4 =107 = 1/10. Taking exponentials again gives
z+3 . 39/10 _ —39/10 _ 3
BT =10 = x+3=200(10 @ = w_200(10—39/10)—1'
ry 15. -5nf2 32 -af2 4¥A2 3w2 smi2
1 \ >
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16. 17. [ ¥
1 /
/ |
18. 19, Ly
X
20.  y 21. y
_.l i X \ /
w -Il I] ,
22. \y/ 23. ¥y
100 ez\__‘__
X X
24. ¥ 25. y
4 [ ;
1
X
26. ¥ 27. ¥
1
| T x
x i X
2 2
28. The graph shows that the minimum is between 10 and 11. y
Values y(10) = 19.562 and y(11) = 19.557 indicate that sor
the minimum occurs for z = 11.
2st
5 10 15 20 %
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1—e /=) ] _pl/e
f(—_'l:) e — - ==
14 e~ V(- 14 el/z
e—l/m -1 1— e~ Us . )
f(—=z) = Py s (W) = —f(z). Thus, f(z) is an odd function.
The graph of f(z) is symmetric about the y-axis, whereas the graph of g{x) exists only for = > 0. They
are identical to the right of the y-axis.
(a} The amount after the first year is Ap(1.035). The amount after the second year is Ag(1.035)%.
Continuation leads to the formula Ay(1.035)* for the amount of timber after ¢ years.
(b) Timber doubles when 249 = Ap(1.035)!. If we divide by Ag and take logarithms to any base, say
10, log,n 2 =t log,, 1.035 = t = log, 2/ log;; 1.035 = 20.1 years.
After the first year its value is 20000(3/4). After two years, the value is 20000(3/4)2, and after ¢ years,
it is 20 000(3/4)%.
If we take 56" roots of both sides of the equation,

. If we divide numerator and denominator by e'/*, we obtain

1—10-%/28
2.08 x 10-6

If y is the logarithm of x to base a, y = log, 2, then 2 = a¥. It follows that = = (1/a)~¥, and this implies
that —y is the logarithm of z to base 1/a.

107856 =1 208 x 1070 = y= = 1.05 x 10°.

z__ *1 a'%8. ™1 tog,, @1 —log, =
If we set z = log, (z1/®2), then @a* = = e =0 Ba ®17108. %2 Thusg, log, x1 —log, xe = 2 =
log, (z1/22). If we set z = log, 232, then 0% = 237 = (@8« ®1)%2 = g% 198 ™1 Thyg, 2, log, 2 = 2 =
log, 272.
No. Both x; and zs must be positive.
{a) If we exponentiate both sides of R = log,, (I/1o), we obtain I/1; = 107 — I = I, 10%.
(b) Richter scale readings are log,g (1.20 x 10%) = 6.08 and logy, (6.20 x 10*) = 4.79.
(a) After one interest period the accumulated value is P[1 4 ¢/(100n)]. After two interest periods, it
is P[1 + ¢/(100n){%. Continuing, the accumulated value after ¢ years, or nf interest periods is Pl +
i/(100n)]™,
(b) When A =2P,i =8 and n = 2,

2P = P14 2tw~P 26" = 2t logy (26/25) =logp2 = t= log2 __ _gg4
= 200/ T\ ©&10 = C&10 = 9Tog (26/25)

Thus, money doubles in 9 years.

i nt i 100n /4 1t/100
(c) If we write that A=P (1 + IOOn) =P [(1 + IOOn) } , and note that

100n
larger and larger, A approaches P /100,
(d) The accumulated value is P = 1000 e519/100 — 182212, For the accumulated value at 6% com-
pounded only once each year, we obtain 1000(1.06)° = 1790.85.

(a) If the voltage is Vp/e at time 7, then

100n/i
i
(1 + ) gets closer and closer to e as n gets larger and larger, we conclude that as n gets

Yo _ yperre),
e

Division by ¥, and logarithms give

_1:_E = T1=RC

(b) The voltage at time ¢ 4 7 is Voe (H7/HO) = o=t/ (RO) =7 /(RC) _ yo=1/7 — Y /e,
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(a) If the current is ip/e at time 7, then

Division by i and logarithms give

(b) The current at time ¢ 4 7 is fge” TN/ — joe= Rt/ le=RT/L — jo=r/7 — jje,

If we multiply by a2, we obtain a quadratic equation in ¢?®, namely, 0 = 3(a?*)? — 10{a®®) + 3 =
(6?® — 3)(3a¢%® — 1). Consequently, a** = 3 or a** = 1/3, and these give 2 = £(1/2) log, 3.

If we write 2% -+ 227 = 2% and divide by 2%, then

o 1EVIFA 145
2 2

1427 =2% — (%227 1=0 = 2

Since 2* must be positive, we choose only (1 + v/5)/2, and take logarithms,

145
1++/5 log;o ( 2 )
2 — _—-——— . 4

If we take logarithms to base 10,

= 4 lOglO 3 + loglo 7

= 7.48.
IOglo 7 - 108310 3 48

(z+4)logy3 = (z—1)logyy 7 =

If we set y = log, 2, then 2 = 2¥. But, then y = logy, 8 also, and this implies that 8 = (22)¥ = 2¥a¥ =
2¥(2) = 2¥*+1. Consequently, y + 1 =3 or y = 2. Thus, 2 = 22, and since z must be positive, z = V2.

Since fl—z) =In{—z+ /(—2)}?+1) ‘ y

Ve f 1+

=1In [(\/3:24—1—33) m

:n(m2+1—w2) .19 5 5 10 %
Va1t

= —In{v22 +1+z) = —f(), 2l

the function is odd. A plot is shown to the right.

Repair costs for the second year are 50(1.2), for the third year, 50(1.2)2, and so on. If R(t) represents
repair costs for ¢ years, then R(#) = 50 + 50(1.2) + --+ + 50(1.2)*'. If we multiply this by 1.2, then
1L.2R(t) = 50(1.2) + 50(1.2)2 + - - - + 50(1.2)*, and

L = 250[(1.2)! - 1),

12R(t) — R(t) = 50(1.2)' — 50 = R(t) =

Thus, the average yearly cost asociated with owning the car for ¢ years is
1 3\* 6\"
= — = =] =1 5.
() ; {20000 [1 (4) (5) ]}
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(a) For 0 <7 < R, the graph is a o)
parabola. For r > R, the graph of In(1+42/RD}
decreases as r increases, and gets

closer and closer to the r-axis.

HE

Hod [n(1+4L7/R%-1]

T

(b) For f(0) = f(r),

ot 4L? _ Hot 4172 I3 rf
i |:111(1+R2)~1]—4ﬂln(l+T:z .
This implies that

!’. 1+£ —]__|_.£_1.L_2:>4_L_E-—£ 1_|_.££ -] = = 2LR

e R r2 2 e R?  V(RE AL je—RE

If we multiply by €2,

2yt /4y? + 4
(€Y - 2y(e®) ~1=0 = ®=—"—VIT" 2y+ =y+vy*+1L

Since e2® must be positive, €2® =y + /4?2 + 1 = z = (1/2)In(y -+ /32 + 1).
2y 4 \/4y? — 4
If we multiply by e®, (%) —2y(eMN +1=0 = = y___é}_l_____ =y+y?-1

Thus, z = In(y + /3% — 1).

If we cross multiply,
. 1 1 1
Ye®+e ) =e®—e T = (1-—y)=c 1+y) = ¥ = ity — z==In 1ty :
1—y 2 11—y
EXERCISES 1.10
3 e'rr/2 — e—-.-rfz
. Bcoshl= (et e 1y =4.63 2. sinh (7/2) = ———— = 2.30
: e\/l—sinB _ e—\/l—sin.’i
tanh+/1 —sin3 = PR e T P =0.729
- o 2 _
Sin~!(sech10) = Sin~! (m) = 9.08 x 107°
Since 2 cschl = 1 — = 1.70 > 1, there is no value for Cos™ (2 csch1).

. esinh & te sinh 5 i 5 -
coth(sinh 5) = T T T 1.00 7. /In[sinh (—3)] = +/In[(e—3 — €3)/2] = 1.52
sech[sec (7/3)] = sech2 = el 0.266 9, e2coshe — o—(e"+e™) — 9 45 x 1077

e? e ?
£2:3266 _ ,—2.3266

sinh [Cot ™! (—37/10)] = sinh 2.3266 = =5.07

We verify representatives of these identities:

sinh (A + B}  sinh A cosh B + cosh A sinh B
cosh (A + B) ~ cosh A cosh B + sinh A sinh B
sinh A cosh B cosh A sinh B

_ cosh A cosh B + coshA coshB _ tanh A + tanh B
cosh A coshB  sinh AsinhB 1 4+ tanh A tanh B

cosh A cosh B + cosh A cosh B
24 —24 A A A —A
sinh2A=e ¢ =2(e ¢ ) (e +e ) = 2 sinh A cosh A

2

tanh (A + B) =

2 2 2
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58 EXERCISES 1.10

24 4 ,—24 Ay —ANZ A —AN 2
coshZA:8 -;6 =(e +26 ) +(-(-J’———-2~e—) — cosh? A + sinh? A

Adding the two equations in 1.77a gives sinh (4 + B) +sinh (A — B) = 2 sinh A cosh B, and this is 1.77].
HFweset X=A+BandY =A— B, then A = (X 4 Y)/2 and B = (X — Y)/2. Substitution of these

into 1.77j gives
sinh (X;Y) cosh (X — Y) - % sinh X + % sinhY.

2
This is 1.771 with X and Y replacing A and B.
12. If we write the equations in the form
A(coskL — cosh kL) = —B(sin kL — sinh kL), A(coskL + coshkL) = —B(sinkL - sinh kL),
and divide one by the other,

coskl, —coshkL  sinkl — sinh kL
cos kL +coshkL — sinkl + sinh kL’

Hence,
(coskL — cosh kL)(sinkL + sinh kL) = (cos kL + cosh kL}(sin kL — sinh k L}

or, 2coskL sinhkl =2 sinkL cosh kL. Division by 2 cos kL cosh kL gives tanhkL = tan kL.
13. (a) f(z) = Sinh™'z f(z) = Tanh™ 'z

A

=

f(z) = Coth™'z f(z) = Csch™'a

(b) These curves do not pass the horizontal line test for existence of inverse functions.
f(z) = Cosh™ 'z f(z) = Sech™ 'z

Ay y

=Y

1 x 1

(c) If we set y = Sinh™ 'z, then z = sinh y = (¥ — ¢¥)/2. Multiplication by ¥ gives
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2z £ \/4 2+
eV == z x+ a2+

(e —2z(e) —1=0 —

Since e¥ must be positive, we must take ¢¥ = z-+v22 + 1 = y = In (z + V22 + 1). Derivations of the
other two results are similar.

(a) Since In ——_‘W) =9, /™ (@) = —2\/ By t exponentiation gives
vmg/8+uv V 8 \m

_______m‘%" =e~2V A9/t and therefore +/mg/B — v = (V/mg/B + v)e 2VPI/™  When we solve this
my v
equation for v, the result is

_ V/mg/B— \fmg/Be VP an(l_m)
- Vs _ z |

14 e=2v/Bo/mt 14 e~ 2VPg/mt

Multiplication of numerator and denominator by eV?#9/™ gives
9= mgfe pamt — e v Palmt = /@ tanh \/ @t
ﬁ e\/,ﬁg/mt + e—\/,ﬂg/mt ,6 m

(b) Since the hyperbolic tangent function gets closer and closer to 1 as its argument gets large, it follows
that the limiting velocity is /mg/8.

EXERCISES 1.11

The plot shows two roots. My electronic device

gives —2.6180340 and -0.381 9660 for roots of g
f(z) = 2% + 3z + 1 = 0. To verify that —2.618034
is accurate to six decimals, we calculate 10}
f{-2.6180335) = ~1.1 x 107 and .
F(—2.6180345) = 1.1 x 1078, A similar ,

p)

calculation verifies the accuracy of —0.381 966. - <

The plot shows two roots. My electronic device y
gives —1.561 5528 and 2.561 552 8 for roots of
f(z)} = 2% — 2 — 4 = 0. To verify that 2.561553 Al
is accurate to six decimals, we calculate
F(2.5615525) = —1.3 x 107% and

F(2.5615535) = 2.8 x 1078, A similar 2N L2/ 3 %
calculation verifies the accuracy of —1.561 553. >

The plot shows one root. My electronic device gives 4y
1.213411 7 for the root of f{z) =23 +2—3=0.
To verify that 1.213412 is accurate to six decimals, 40

we calculate f(1.2134115) = —8.8 x 1077 and 20}
F(1.2134125) = 4.5 x 1078,
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The plot shows one root. My electronic device gives
3.044 7231 for the root of f(z) = z® — 2% + 2 — 22 =0.
To verily that 3.044 723 is accurate to six decimals,

we caleulate £(3.0447225) = —1.5 x 10~° and
F£(3.0447235) = 8.0 x 1078,

The plot shows three roots. My electronic device
gives —0.911503 3, 0.8705387 and 5.040 964 6

for the roots of f(z) = 2% —ba? —ax +4 =0.

To verify that —0.911 503 is accurate to six decimals,
we calculate f{—0.9115035) = —2.0 x 109 and
F(—0.9115025) = 8.6 x 1070, The other roots are
0.870 539 and 5.040 965.

The plot shows one root. My electronic device gives
0.754 877 7 for the root of f(z) =2® +2—1=0.
To verify that 0.754 878 is accurate to six decimals,
we caleulate f(0.7548775) = —4.4 x 1077 and
F(0.754 878 5) = 2.2 x 1079,

The plot shows two roots. My electronic device gives
41.241 523 8 for the roots of f(z) = 2* + 32? -7 =0.
To verify that 1.241 524 is accurate to six decimals,
we calculate £(1.2415235) = —4.0 x 107% and
F(1.2415245) = 1.1 x 1075, Symmetry verifies

the other root.

We rewrite the equation in the form f(z) = 2% — 222 -3 =10,
the graph of which is shown to the right. My electronic
caleulator gives the root 2.485 584 0. To verify

that 2.485584 is accurate to six decimals, we

calculate f(2.4855835) = —4.3 x 105 and

f(2.4855845) = 4.3 x 107°,

The plot shows seven roots, one of which is z = 0.

My electronic device gives the other gix as +2.852341 9,
+7.0681744, and £8.4232040. To verify that

2.852 342 is a root of f(z}) =z — 10sinx accurate to

six decimals, we evaluate f(2.8523415) = —4.2 x 108
and £(2.8523425) = 6.4 x 1078, Verification

that £7.068 174 and 4-8.423 204 are roots

accurate to six decimals is similar.

The plot shows two roots. My electronic device gives
+0.795 3239 for the roots of f(z) = secz — 2/(1 + %) =0.
To verify that 0.795 324 is accurate to six decimals,

we calculate f(0.7953235) = —1.4 x 10% and
F(0.7953245) = 2.1 x 1078,

20F

¥
201
il e , .
-2/ v x
20l
4y
1 /
3 2 p—" R

-10r

10

1.
T
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The plot shows two roots. My electronic device
gives —1.50605627 and —0.795 823 2 for the roots

of f(z) = (z+1)% —sindx = 0. To verify that
—1.506 053 is accurate to six decimals, we calculate
F(—1.5060525) = —1.0 x 10~% and

f(=1.5060535) = 3.8 x 1078, Verification

that —0.795 823 is accurate to six decimals is similar.

The plot shows sgix roots. My electronic device
gives —2.9311371, —2.4675175, —1.5553650,
—0.787 6528, 0.056 2576 and 0.642 8507 for

the roots of f{z) = (z + 1)* — 5sindz = 0. To
verify that —2.931 137 is accurate to six decimals,
we calculate f(—2.9311365) = —1.1 x 10~% and
F(~2.9311375) = 6.7 x 1078, Verification

that —2.467 518, —1.555 365, —0.787 653,

0.056 258, and 0.642 851 are accurate to

six decimals is similar.

The plot shows one root. My electronic device
gives 0.815 5534 for the root of f(z) =2 +4 Inz = 0.
To verify that 0.8155583 is accurate to six decimals,
we caleulate f(0.8155525) = —5.4 x 107°% and
f(0.8155535) = 4.8 x 1077,

The plot shows one root. My electronic device

gives 4.188 7601 for the root of f(z) =2 lnz —6=0.
To verify that 4.188 760 is accurate to six

decimals, we calculate f{4.1887595) = —1.5 x 10~°
and f(4.1887605) = 9.3 x 10~7.

The plot shows two roots. My electronic device
gives 0.204 1836 and 3.576 065 3 for the roots of
f(z) =e® + e * — 10z = 0. To verify that 0.204 184
is accurate to six decimals, we calculate
£(0.2041835) = 9.5 x 10~ and

£(0.204 184 5) = —8.6 x 1076, The other root to six
decimals is 3.576 065.

The plot shows one root. My electronic device

gives 0.852605 5 for the root of f(z) = 22 — de™2® = (.
To verify that 0.852 606 is accurate to six decimals,
we calculate f(0.8526055) = —6.4 x 1072 and
F(0.8526065) = 3.2 x 1079,

The plot shows three roots. My electronic device
gives —2.1284, —0.201 6, and 2.3301 for the
roots of f(z) = x® — bz — 1 = 0. To verify that
2.330 has error no greater than 1073,

we calculate f(2.329) = ~1.2 x 1072 and
£{2.331) = 1.1 x 1072, Verification that —2.128
and —0.202 have the same accuracy is similar.

\<;

10}

10
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The plot shows two roots, one of which is =0,
My electronic device gives —1.248 30 for the other ¥
root of f(z) = 2% — 2% + 22% + 62z = 0. To verify 20t
that —1.248 3 has error no greater than 1074,
we calculate f(—1.2482) = —1.1 x 1073 and ol
F(-1.2484) = 1.2 x 1073,

We rewrite the equation in the form f(z) =23 + 22+ 2 +2=0.
The plot shows one root. My electronic device y
gives —1.353 210 for the root. To verify that 1ok
~1.353 21 has error no greater than 1075,
we calculate f(—1.35320) = 3.8 x 107° and
£(~1.35322) = —3.8 x 10-5.

|
\_

\
)

|

™

=Y

We rewrite the equation in the form
flz) =2® — 2% - 6z — 1 = 0. The plot shows

three roots. My electronic device gives Y
—1.8920, - 0.1725, and 3.0644 for the or
roots. To verify that —1.892 has error no greater /
than 1073, we calculate f(—1.893) = —8.9 x 1073 NG ./,
and f(—1.891) = 8.1 x 10~%. Verification / ! Loz x
that —0.172 and 3.064 also have the required

<10}

accuracy is similar,

The plot shows six roots. My electronic device
gives —2.9311, —2.4675, —1.5554, —0.7877,
0.056 3 and 0.642 9 for the roots of

f(z) = (z + 1) — 5sindz = 0. To verify that Y

—2.931 has error no greater than 1072, 15

we calculate f(—2.932) = 1.5 x 102 and 10

F(—2.930) = —2.0 x 1072, Verification

that —2.468, —1.555, —0.788, 0.056, and 1\ /\ N

0.643 have error no greater than 1073 is AV 2 x

similar. V “SI*\/

The plot shows two roots. My electronic device gives

+1.098 59 for the roots of f(z) = cos?x — 2% + 1 =0. y

To verify that 1.098 6 has error no greater than 2

104, we calculate f{1.0985) = 2.6 x 10~1 \

and f(1.0987) = —3.4 x 1074, 2/ 1 3 X
2t
4}

The plot shows no solutions.

10
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EXERCISES 1.11 63

The plot shows one root. My electronic device gives hy
0.321 21 for the root of f(z) = ¥ 4 e® —4 =0. 10r
To verify that 0.321 2 has error no greater than
1071, we calculate £(0.3211) = —1.0 x 103 and
f£(0.3213) = 8.2 x 1074,

3 3 74 7 %
_——__/

5L

To find z-coordinates of the points of intersection, we set z® = z + 5. My electronic device gives
x = 1.904 161 as the only solution of f(z) = 2° — z — 5 = 0. The values f(1.9041605) = —3.5 x 10~°
and f£(1.9041615) = 6.3 x 10~ confirm six-decimal accuracy. Both equations y = 23 and y = z -5 give
the same four decimals y = 6.9042. The point of intersection is thevefore (1.9042, 6.9042).

To find @-coordinates of the points of intersection, we set (z + 1)% = 2> — dz. My electronic device gives
2 = —1.801954, —0.172480, and 3.064435 as solutions of f(z} = 2% — 4z — (z + 1)? = 0. The values
f(—1.8919545) = —5.1 x 10~7 and f(—1.8919535) = 8.0 x 105 confirm six-decimal accuracy of the
first. Both equations y = 2® — 42 and y = (z + 1)? give the same four decimals y = 0.7956. A point of
intersection is therefore (—1.8920,0.7956). Similar procedures lead to the other points of intersection,
(—0.1725,0.6848) and (3.0644, 16.1596).

To find z-coordinates of the points of intersection, we set 2% — 20 = 2% — 222, My electronic device
gives * = —1.726688, and 2.130189 as solutions of f(z) = 2* — 2% + 222 — 20 = 0. The values
f(2.1301885) = —7.8 x 1075 and f(2.1301895) = 2.6 x 1075 confirm six-decimal accuracy of the
second. Both cquations y = 2% — 20 and y = 2® — 2z” give the same four decimals y = 0.5908. A point
of intersection is therefore (2.1302,0.5908). A similar procedure leads to the other point of intersection
{(—1.7267, -11.1109}.

To find z-coordinates of the points of intersection, we set @/(z ++ 1)} = 2% + 2. My electronic device gives
& = —1.353 210 as the only solution of f(z) = 2%+ 22+ 242 = 0. The values f{—1.3532105) = —2.0x
1078 and f(—1.3532095) = 1.8 x 1076 confirm six-decimal accuracy. Both equations y = z/{z + 1) and
y = z*4-2 give the same four decimals y = 3.8312. The point of intersection is therefore (—1.3532, 3.8312).

My electronic device gives 2 = 3.926602 as the smallest positive solution of f(z) = tanz — (e* —
e ®)/(e® +e~®) = 0. The values f(3.9266015) = —1.6 x 1076 and £(3.9266025) = 3.8 x 107 confirm
six-decimal accuracy. When divided by 20r, the smallest frequency is 0.0625. A similar procedure for
the second frequency gives 0.1125,

{a) My electronic device gives t = 3.833 as the solution of f(¢) = 1181(1 — e~*/'9) — 98.1¢ = 0. Since
y(3.825) = 0.14 and y(3.835) = —0.03, it follows that to 2 decimals ¢ = 3.83 s.

(b) When we set 0 = y = 20¢ — 4.905t%, the positive solution is 4.08 s.

My electronic device gives # = 0.012957 as the solution of f(z) = 2Pz — eZ* + ¢~ L% = 0 when P = 80
and L = 70. Since f{0.0129565) = 2.3 x 10~% and f(0.01299575) = —1.9 x 10~°, we can say that the
solution is z = 0.012 957 to six decimals. This gives T' = pg/(22) = 189.3.

To simplify calculations, we set z = ¢/A. Then, z must satisfy the equation f(z} = (6 —z)e* — 5 = 0.
My clectronic device gives 2z = 4.965114232. With this approximation for z, we obtain A = ¢/z =
0.000 028 974. For a seven decimal answer, we use g(A) = (5A—c)e®/* — 5 to calculate g(0.00002895) =
—1.7 x 10~% and ¢(0.000 029 05) = 5.1 x 105, Thus, to 7 decimals, A = 0.0000290.

Consider the function g(z) = f(z) — z. Since the range of f{z) is a < z < b, it follows that f(a) > a
and f(b) < b. Consequently, g(a) = f(a) —a > 0 and g(b) = f(b) — b < 0. If f(a) =a, then z =a
is a solution of f(z) = z. If f(b) = b, then = = b is a solution. When f(a) # a and f(b) # b, the
Zero Intermediate Value Theorem implies that there is at least one solution of g(z) = 0 in the interval
a < x < b. This gives a solution of f(z) = =z.
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Suppose we let 77 and 7% be the tempera- i

tures at the points (r, 0} and (—r,0). Then, (x)
F(ry=f(r)—g(—r) =Ty — Ty and

F(—r) = f(-r} —g(r) = T, — Th. e By
If Ty = Ty, then temperatures are the same at

the points (r,0) and (—r,0). Otherwise, values \ Jx)

of F(z) have opposite signs at 2 = r and z = —r.

This implies that there is a value of 2 between —r and » at which F(x) = 0. At this value, f(z) = g(—2),
and these give equal temperatures at points opposite each other on the equator.

Let f1(¢) be the position of the runner on Saturday at any time ¢ on the course taking time ¢ = 0 at 7:00
a.m. Choose z = 0 at A and z = 26 at B, so that f1(0) = 0 and fi{T1) = 26, where T} is the time to finish
the marathon on Saturday. Similarly, let fa(t} be the position of the runner on Sunday with f2{0) = 26
and fo(T2) = 0, where T3 is her finish time on Sunday. Consider the function f(t) = f1(t) — fa(t). If T'is
the smaller of 77 and T3, then, f{0) = f1(0)— f2(0) = —26 and f(T) = fi(T)— f2(T) > 0. Consequently,
there is a value of ¢ between ¢ = 0 and ¢ = T at which f(¢) = 0, and at this time f;(¢) = fa(t); that is,

the runner is at this position at the same times on the two days.

b
1| gt

iR

x=0 X

(a) Suppose f(x) is continuous on an interval I. Let ¢ and d, where d > ¢, be any two points in the
range of f(z) and e be any number between ¢ and d. There exist values a and b in I such that d = f(b)
and ¢ = f(a). If we define a function F(x) = f(z) — e, then

F(a}(b) = [f(a) —e][f(b) — ] = (c —e)(d —e) <0.

Since F'(z) is confinuous, the zero intermediate value theorem guarantees the existence of a number z
between o and b for which 0 = F(z) == f(#) — e. This means that e is in the range of f(z). Hence, the
range of f{2) is an interval,

(b) Not necessarily. For example, f(2) = 1 maps every interval on the z-axis onto a single point.

REVIEW EXERCISES

Possible rational solutions are 41, £2, +4. We find that = 2 is a solution. We factor & — 2 from the
cubic,

-2 —d=(z -2 +z+2).

Sinece the discriminant of the quadratic is negative, the only real solution is x = 2.

. Possible rational solutions are +1, 3:3, £9, £27, £1/2, £3/2, +9/2, +27/2. We find that z = 3 is a

solution. We factor 2 — 3 from the cubic,
2% — 922 1 27 = (2 — 3)(22% — 32 — 9) = (z — 3)(2z + 3)(z — 3) = (z — 3)*(2z + 3).

Solutions are = = 3 with multiplicity 2 and z = —3/2.

Possible rational solutions are +1, £5, £1/2, £5/2. We find that = 1 is a solution. We factor x — 1
from the quartic,

2zt 23 02?4 13z 5= (z — 1)(22° + z% - 82 +5).

Possible rational zeros of the cubic are the same. We find that z = 1 is a zero, and factor £ — 1 from
the cubic,

22t — 2% —92% 4132 — 5 = (2 — 1)2(22% + 32— 5) = (2 — ¥z — 1)(2z + 5) = (= — 1)3(2x +5).

Solutions are x = 1 with multiplicity 3 and z = —5/2.
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The list of possible rational solutions here is formidable. Perhaps we can be a little ingenious. The fact
that 362 and 225 are perfect squares suggests investigating whether the poynomial is the square of a
quadratic expression. A little experimentation reveals that

3621 + 122° — 17927 — 302 4 225 = (622 + z — 15)% = (3= + 5)%(2z — 3)™

Solutions are therefore x = —5/3 and 2 = 3/2 each of multiplicity 2.

The distance between the points is /(4 + 1)2 + (2 — 3)2 = +/26. The midpoint of the line segment is
((4-1)/2,(3+2)/2) = (3/2,5/2).

The distance between the points is /(2 + 3)% + (1 + 4)? = 5v/2. The midpoint of the line segment is
(2~ 3)/2.(1 - 9)/2) = (~1/2,~3/2). |

Since the slope of the line is 1/2, its equation is y —3 = (1/2)(x —2) or 2y =2 + 4.

Since the slope of the line joining (—2, 1) and the origin is —1/2, and the midpoint of the line segment
joining (1, 3) and (~1,5) is (0,4), the equation of the required line is y — 4 = 2(x — 0}, or, y = 2w + 4.
If we set 4y — 11 = /42 + 9, we see that the solution is y = 4. The point of intersection is (5,4). Since
the slope of the required line is —4, its equation is y — 4 = —4{x — 5) or 4o + y = 24.

If we substitute y = 22 into the second equation, 5z = 6 — 2%, or z* + bz — 6 = 0. Possible rational
solutions are +1, £2, £3, 6. We find that x = 1 is a solution and factor 2 — 1 from the quartic

2t 45 —-6=(x—-1)(z*+2°+2+6)=0.
We now see that x = —2 is a zero of the cubic so that

2?5z —6=(z—1)(z+ D@ -z +3)=0.
The curves therefore intersect at the points (—2,4) and (1,1). The equation of the line joining these
pointsisy —1=—(z~1) =2 +y =2
This function is defined for all reals. 12. For 22 — 5 to be nonnegative, |z| > NG
Since 22 + 3z + 2 = (= + 1)(z -+ 2), the function is defined for all z except 2 = —1 and z = —2.
Since 2 + 222 + z = z(z 4 1)?, we cannot set 2 = 0 or z = —1.
This function is defined for all reals. 16. z >0
Since 22 + 4z — 6 =0 when z = (*4 + m)ﬂ = —2+4 /10, and is negative between these values,
we must restrict x to the intervals z < —2 — /10 and z > —2 + /10. These can be combined into
Iz + 2| > +/10.
Since 222 + 42 — 5 = 0 when & = (-4 £ /16 +40)/4 = —1 + V/14/2, and is negative between these
values, we must restrict 2 to the intervals & < —1—+/14/2 and # > —1++/14/2. These can be combined
into |z + 1) > v14/2.
If we express the function in the form

fay =222, ws_____ | e
x-3 - }:+

the sign diagram to the right indicates that e, —[ aiaiaieied thol
the function is defined for « < 5/4 and 2 > 3. @8V Tl T 1
We require
2 _ — 1z -1 0 1
Ogm_l::c 1:(33 1)(9,+1)' - - " >
@ x x A _____ e o
The sign diagram indicates that this occurs for x>t T [ *
—1<x<0, and 2z > 1. L I D
Ce-DAx )X - + [ o I _+_
Straight line 22. Parabola 23. Nome of these 24. Ellipse 25. Hyperbola 26. None of these

Circle 28. Parabola 29. Ellipse 30. Circle 31. Hyperbola 32. Hyperbola
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33. With formula 1.16, the distance is

34. With formula 1.16, the distance is

2(1) - (=3) + 3
VE+(-1)?

(—2) + 3(-5) —4

REVIEW EXERCISES

8

7

35. This is the parabola y = 222
shifted upward 3 units.

y
X
37. This is the cubic y == 2°
shifted downward 1 unit.
Y
/—" -
39. Only the point {0,0) satisfies
this equation.
y
x

41. This is a hyperbola with
y-intercepts +4/3/2 and
asymptotes y = +a/v/2.

36.

38.

40,

42,

This is the circle 22 + y? = 4 with
centre (0,0) and radius 2.

24

This equation describes two straight
lines y = L2,

b
g

This is an ellipse with z-intercepts
++/6 and y-intercepts i\/ﬁ.

y\m
-

When we complete squares on z- and y-terms,
(y —2)% — (z — 1)% = 2. Asymptotes for this
hyperbola are y = 2 &+ (2 — 1} intersecting at
(1,2).
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43. The period is 2x/3.

AN
VARVIRY/

45. The period is , and the
phase shift is 7 /8.

wiy
2
B
=Y

w

by

ANAWA
Vi

47. Completion of squares on - and y-terms

gives (2 —2)% +2(y — 1)? = 4. This is
an ellipse,

=
=y
E

. (20
3 T %
,1+v2)
49. We add ordinates of y = ||
and y = [z — 1.
J\y
I
1 x

44, When we expand the cosine function,
gy = —sin 2.
1y

-1F

46. When we expand the sine function,

y = 2cos 3.

AW/IWA
VARV,

L]

48. If we square the equation y? = —2% 4 4z + 4,

and then complete the square on the z-terms,
(z —2)? +y% = 8. 'T'his is a circle with

centre (2,0) and radius 2v/2. The original
equation describes the top half of the circle.

y

22T 2 2242 x

B50. When we square the equation,

PY=lz—1]~1ory?+1=z-1|

Thus,  — 1 = +(y? 4+ 1), or, 2 = 1 L (3% + 1)
= —y? y? + 2. This is two parabolas, the
top halves of which are shown below.

Ay
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51. We interchange axes in Figure 1.90c. 52. We must have x > —4/3.
The x-intercept is --1.
¥ y
9 /_—_ ) /"-
——/ _% -1 X
X
S

53. We interchange axes in Figure 1.115 54, We graph this even function by
and reflected in the z-axis. reflecting that part of y = sinz to
the right of the y-axis in the y-axis.
Jy y
1
A s
-7 x X
-1
55. We draw y = |sinz] and then 56. We take square roots of
take its refection in the z-axis. ordinates of y = sin 2z.
y by
1 1
=i ™ x
-1 -2 %
B57. The graph has the shape of B8, The graph has the shape of
sinh 2 shifted 1/2 unit to the right. tanh & with asymptotes y = k4.
y P .
=172 x x
. , . _il3+172 .
59. With slopes —1/2 and 3, equation 1.60 gives § = Tan Y = 1.43 radians.
1/4+2
60. With slopes 1/4 and —2/3, equation 1.60 gives 6 — Tan™ ! {—iﬂ-éé’ = 0,833 radians.

61, f(z)=1

62. Since (z + 1)(2 — z) is nonnegative only for —1 < 2 < 2, the function /(x + 1){2 — a) is only defined
for these values of z.

63. f(z)=1/(2% - 1)
64. Since /—= is defined only for 2 < 0, a function is 1 -+ /—z.
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=)
T

Y

65. The graph shows that f(x) has an inverse on the
= (z —2)? — 1, then (z — 2)? = y + 1, from which
2=24+/y+1 Theequationz=2— /y +1
z =2+ /F 7T describes the right half. \
For & < 2 then, the inverse function is
f @) =21 Vo T L
66, The graph shows that f(2) has an inverse on the r y
If we set y = z? — 822, then (2%)? — 8(2?) —y = 0. \ , , /
The quadratic formula gives 2 2 fx
8+ /64 +14
$2:%=4:}:\/16+ 3
from which 2 = ++/4 4 /T6 + y. Since £ = —/4 + /16 + ¥,
describe parts of the graph on each of the above intervals,
respectively, it follows that inverse functions on these intervals are:
i) =y4-Vib—zfor0<2 <2, fY2)=+v4+ V16t zforz>2.
67. The graph shows that f(z) has an inverse on the Y
Thus & = ++/(2 — 3y)/(y — 1). The inverse function for
z<0is fH{z) = —/(2 — 3z)/(z — 1), and that for
68. The graph shows that f(z) has an inverse for
~l <z <0and for x> 0. If we set y = /2?/{x +1), ty
quadratic formula gives @ = (3 & /y* + 45?)/2. Since
z = (y? — vy + 432)/2 describes the graph for —1 < x <0,
inverse functions are f~1(z) = (22 — V29 & 42%)/2 for _
—1<2<0,and f1(z) = (2? + V2t 1 422)/2 for z > 0. -1 *
and expand the right side,
cos 2z — sin 2z = A(sin 2z cos ¢ + cos 2z sin ¢).
2= (—1)2 + 1% = A% cos? ¢ + A%sin® ¢ = A% If we 1= >
choose A = /2, then sin ¢ = 1/+/2 and 8 &
cos¢ = —1/+/2. These are satisfied by ¢ = 3w /4.
The amplitude is v/2, the period is 7, and the "
nm, where n is an integer. These give @ = —3w/8 + nn/2. The second smallest positive solution is
z = 57 /8, which we could also have seen from the graph.

intervals x < 2and x> 2. fweset y =2% — 4+ 3
describes the left half of the curve, and 3
FH2)=2— o +1, and for z > 2, it is ~2 ¢
intervals z < -2, 2<2<0,0<2<2 and z > 2.
2=—/4—-/T6—y, 2 =+/4~ /16— y,and 2 = /4 4+ /TG + y
FH )= -4+ VI6+aforz < -2 fYHa)=-—-yd4—Vib—zfor —2<z <0
A
intervals z < 0 and 2 > 0. If we set y = (2% + 2)/(2?% + 3), b
then (22 + 3)y = 22 + 2, from which (y — 1)2? =2 — 3y. \/—
2= 0is f71z) = /(2 3z)/(x —1).
then z* = (z + 1)y?, from which 2? — y?2 — y%2 = 0. The
and z = (y2 + v/y* + 4y%)/2 describes the graph for 2 > 0,
69. If we set f(z) = cos2x — sin 2z = A sin (2x + ¢),
&3
This will be true for all z if we set A cos¢p = —1
and A sin¢ = 1. When these are squared and added, \ \
phase shift is —37/8. Angles for which f(z) = 0 are defined by 0 = v/2sin (22 + 3n/4) = 2z + 3w /4 =
70. Since 2 sin 22 has period m, and 3 cos 3z has period 2x/3, the function f(x) has period 2.
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This quadratic in cosz can be factored 0 = cos?z -+ 5cosz — 6 = (cosx + 6)(cosx — 1). Thus, either
cosz = —6 or cosx = 1. The former is impossible, and solutions of the latter are = 2nw, n an integer.

One solution for 2z of sin 2z = 1/4 is 2z = Sin~!(1/4) = 0.253. All solutions are given by

9 = g + (’—; - 0.253) fonmr —  z= % 4 0.659 + nm, n an integer.

We can rewrite the equation in the form sin (2 + 1) = £1/4/3. One solution of sin{z - 1) = 1/V/3 for
x+1is 24 1 = Sin~!(1/4/3) = 0.6155. All solutions are given by

z+1= % + (g — 0.6155) + 2nm = =14+ g + 0.955 + 2nw, n an integer.

From sin (z 4 1) = —1/+/3, we obtain the solutions
r=—-1- g + 0.955 4+ 207, n an integer.

Since 5 — 2x is in the principal value range for the inverse tangent function, we may take tangents of
both sides of the equation,

1
3z 4+ 2 = tan (5 — 2m) — m:—§+§tan(5~2w)=——1.79.

If cos 2z = sinz, then 0 = sinz — (1 — 2 sin®z) = 2sin® 2 4+ sinx — 1 = (2 sinz — 1)(sinz + 1). Thus,
either sinz = —1, the solutions of which are z = 2nwx - 7/2 = (4dn — 1)7/2, where n is an integer, or,
sinz = 1/2. Solutions of this equation are @ = 7 /6 + 2nm, 57 /6 + 2nx. These can be represented more
compactly in the form 2 = 2nw +w/2 L w/3 = (dn+ V)n/2+ /3.

If we write In {sinz(1 + sinz)] = In(3/2), and exponentiate both sides to base e, we obtain sin (1 +

~2:+/FF24  —1k/7
2

nonnegative in the original equation, we take sinz = (v/7 — 1)/2. Solutions of this equation are

z = {Sin (VT —1)/2} + 2nw, 7 —Sin (VT —1)/2] + 2nw} = {0.966 + 2nmw, 2.175 + 2nx}.

. Since sin 2 must be

sinz) = 3/2, or, 2sin®x 1 2sinz — 3 = 0. Thus, sinz =

These can be expressed in the form z = g =+ (g - 0.966) + 2nm = (4?12—_'_1) £ 0.604.
If 3Sin~!(e®+?) = 2, then *+? = sin (2/3), from which z = —2 + In[sin (2/3)] = —2.48.
If 3sin (e®+?) = 2, then sin (e*1?) = 2/3. This implies that
"2 = {Sin~1(2/3) + 2nmr, 7w —Sin~!(2/3) + 2nw} = {0.73 + 2nw, 7 —0.73 + 2nw}.
These values can be represented more compactly as

dn41

&t = g +0.84 + 2nr = ( ) 7+ 0.84.

Because e*t2 must be positive, 2 must be a nonnegative integer. Finally then,

2 =ln [(4“; 1) - :|:0.84] 9, wheren > 0.

Since Tan™'(1/4) = 0.245, it follows that 2 cosh2 = 0.245 -+ nw, were n is an integer. Hence, z =
(0.245 + nx)/ cosh 2 = 0.065 -+ 0.27n7.

If 4 = sinhz = (% — e~%)/2, then multiplication by e® gives €2® — 8¢® — 1 = 0. Thus,

oo BEVOL+A \/264“:4i\/1‘7'_

Since e* must be positive, e = 4 + /17, and z = In (4 + /17) = 2.09.
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Since tanz is the inverse of Tan™ 'z, for all &, it follows that f{z) = . Its graph is shown to the left

below.
(b) On the interval —7/2 < z < 7/2, the function Tan™ 'z is the inverse tanz. For these values of x
then, f(z) = 2. Since tanz is m-periodic, so also is f(x), and the graph is shown to the right below.

y ¥y

V=x
Y=x+ y=x

To solve the equation z(¢) = 0, we divide by cos4t,

1 1
tandt = T = 4t = Tan '(-0.1) + nm = —0.09967 -+ n7 = t= Z(—0.09967 + nr),

where n is an integer. The smallest positive solution is 0.760 (when n = 1).

Travel time on water is distance on water bt

Va2 + 36 divided by rowing speed; travel ab

time on land is distance on land 9 — = divided by I

walking speed. Total travel time is therefore J

Sz -
t— f(z) — x +36+9 z
3 5 . ) . .
2 4 3 8 x

My electronic device gives 1.5260 for the only root of f(z) = 2® —22% + 42 —5 = 0. To verify that 1.526
is accurate to three decimals, we calculate f(1.5255) = —2.2 x 107% and f(1.5265) = 2.6 x 1075,

My electronic device gives 1.4096 and —0.6367 for roots of f(z) = 2% — 1 — sinz = 0. To verify that
1.410 is accurate to three decimals, we calculate £(1.4095) = —3.3 x 10~* and f(1.4105) = 2.3 x 107,
A similar calculation confirms —0.637 as the other root.

My electronic device gives —11.618 69, —0.873 80, and 0.49249 for roots of f(z) = 2® + 1222+ 42— 5= 0.
To verify that 0.4925 has ervor less than 1074, we calculate f(0.4924) = —1.5 x 1072 and f(0.4926) =
1.8 x 1073, A similar calculation confirms —11.6187 and —0.8738 as the other roots.

My electronic device gives —4.93852, —3.69799, —0.04161, and 2.84222 for roots of f(z2) = 22 —1 —
24 sinx = 0. To verify that 2.8422 has error less than 10~4, we calculate f(2.8421) = —3.3 x 10~ 2 and
£(2.8423) = 2.4 x 10~2. A similar calculation confirms —4.9385, —3.6980, and —0.0416 as the other
roots.

Let us take a coordinate system as shown, in
which case a? = b* 4 d?. Slopes of AB and OC are

b.d) Clath,d)
d/(b — a) and d/(b + a). The product of these is y -
d d 4t 1
b—a/\b+a) b2-a?
Hence the diagonals are perpendicular.
g A@0 %
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