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1 Logic and Proofs

1.1 Propositions and Connectives
1. (a) true (b) false (c) true (d) false
(e) false (f) false (g) false (h) false
2. (a) Not a proposition
(b) False proposition

(c) Not a proposition. It would be a proposition if a value for = had been
assigned.

(d) Not a proposition. It would be a proposition if values for  and y had been
assigned.

(e) False proposition
(f) True proposition
)
)
i) False proposition

(i)
()

(g) False proposition
(h

True proposition

Not a proposition. It is neither true nor false.

3. (a)

P ~P PA~P
T F T
F T F

(b)
P ~P Pv~P
T F T
F T T

()
P Q ~Q PA~Q
T T F F
F T F F
T F T T
F F T F

P Q ~Q QV~Q PAQV~Q)
T T F T T
F T F T F
T F T T T
F F T T F

P Q ~Q PAQ (PAQV~Q

T T F T T

F T F F F

T F T F T

F F T F T
(£)

P Q PAQ ~(PAQ)

T T T F

F T F T

T F F T

F F F T
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HEHAERHBE R

STl S N i C N

~P ~Q ~PA~Q

P Q

NSNS

~ B HH

~ B~ H

HEHE A

HE

P Q R QVR PA(QVR)

HERHMABE DDA

HEHEHBHEHRMMK

HEHBHEHAD L&
HEHEM A&

HEHERBHREBE®K

(PAQ)V(PAR)

P Q R PAQ PAR

HREREHEAEHR R

S T S I ST T S

I = N T o ST C

HEHEHBEA R DK
HEHAAEHEH R K

HERHEREHEREHK

(d) true
(h) false
(1) false

(c) true
) false
) false

(
(

o0 =4

) true
false
true

N A~
L s T

(
(
(

(a) false
(e) false
(i) true

4.

(a) No solution.

5.

P Q PVQ QVP

HEHK

HEEHK

HEH A

HEH K

Since the third and fourth columns are the same, the propositions are

equivalent.
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()

(d)

(€)

(f)

(2)

P Q PAQ QAP

T T T T

F T F F

T F F F

F F F F
Since the third and fourth columns are the same, the propositions are
equivalent.

P Q R QVR PV(QVR) PvQ (PVQ)VR

T T T T T T T

F T T T T T T

T F T T T T T

F F T T T F T

T T F T T T T

F T F T T T T

T F F F T T T

F F F F F F F

Since the fifth and seventh columns are the same, the propositions are
equivalent.

P Q@ R QAR PAQAR) PANQ (PANQ)AR

T T T T T T T

F T T T F F F

T F T F F F F

F F T F F F F

T T F F F T F

F T F F F F F

T F F F F F F

F F F F F F F
Since the fifth and seventh columns are the same, the propositions are
equivalent.

P Q@ R QVR PA(QVR) PANQ PAR (PANQ)V(PAR)

T T T T T T T T

F T T T F F F F

T F T T T F T T

F F T T F F F F

T T F T T T F T

F T F T F F F F

T F F F F F F F

F F F F F F F F
Since the fifth and eighth columns are the same, the propositions are
equivalent.

P Q@ R QAR PV(QAR) PvQ PVR (PVQ)A(PVR)

T T T T T T T T

F T T T T T T T

T F T F T T T T

F F T F F F T F

T T F F T T T T

F T F F F T F F

T F F F T T T T

F F F F F F F F
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(h)
(i)

(a)
(c)
(e)
(g)
(a) ~
(c)

8. (a)

(b)

()

9. (a)

Since the fifth and eighth columns are the same, the propositions are
equivalent.

No solution.

P Q PVQ ~(PVQ) ~P ~Q ~PA~Q

T T T F F F F
F T T F T F F
T F T F F T F
F F F T T T T

Since the fourth and eighth columns are the same, the propositions are
equivalent.

equivalent (b) equivalent
equivalent (d) equivalent
equivalent (f) not equivalent
not equivalent (h) not equivalent
~ P, true (b) PAQ, true
PQ,true (d) PVQVR, true

Since P is equivalent to @, P has the same truth table as Q. Therefore, )
has the same truth table as P, so Q) is equivalent to P.

Since P is equivalent to @, P and @ have the same truth table. Since @ is
equivalent to R, () and R have the same truth table. Thus, P and R have
the same truth table so P is equivalent to R.

Since P is equivalent to @), P and @ have the same truth table. That is, the
truth table for P has value true on exactly the same lines that the truth
table for @ has value true. Therefore the truth table for ~ @ has value false
on exactly the same lines that the truth table for ~ P has the value false.
Thus ~ @Q and ~ P have the same truth table.

(PAQ)V (~ PA ~ Q) is neither.

P Q ~P ~Q PAQ ~PA~Q (PAQ)V(~PA~Q)
T T F F T F T
F T T F F F F
T F F T F F F
F F T T F T T

~ (PA ~ P) is a tautology.
P ~P PA~P ~(PA~P)
T F F T
F T F T
(PAQ)V (~ PV~ Q) is a tautology.
P Q ~P ~Q PAQ ~PVv~Q (PAQ)V(~PV~Q)
T T F F T F T
F T T F F T T
T F F T F T T
F F T T F T T
(AANB)V (AN~ B)V (~ AAB)V (~ AA ~ B) is a tautology.
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(AANB)V (AN ~ B)V
~A ~B AAB AA~B ~AANB ~AA~B (~AAB)V(~AA~ B)

TGRS
SRR I
HmS
H-==
T
SR RoN
oS
STo
AR =4

() (QA ~ P)A ~ (P A R) is neither.
P Q R ~P QA~P PAR ~(PAR) (QA~PA~(PAR)
T T T F F T F F
F T T T T F T T
T F T F F T F F
r F T T F F T F
T T F F F F T F
F T F T T F T T
T F F F 1 F T F
F F F T F F T F

(f) PV[(~QAP)A(RV Q)] is neither.

P Q R ~Q ~QAP RVQ [(~QAP)ANRVQ] PV[(~QAP)A(RVQ)]
T T T F F T F T
F T T T r r r
T F T T T T T T
F F T T ¥ T F ¥
T T F F F T F T
F T F F ¥ T F F
T F F T T F F T
F F F T F F F F
10. (a) contradiction (b) tautology
(c) tautology (d) tautology

11. (a) x is not a positive integer.

)
(b) Cleveland will lose the first game and the second game. Or, Cleveland will
lose both games.

5<3
641,371 is not composite. Or 641,371 is prime.

(c)
(d)
(e) Roses are not red or violets are not blue.
()
)
)

g
h

T is bounded and T is not compact.
(g) M is not odd or M is not one-to-one.
(h) The function.f does not have a positive first derivative at = or does not
have a positive second derivative at x.

(i) The function g does not have a relative maximum at = 2 (deleted comma)
and does not have a relative maximum at = = 4, or else g does not have a
relative minimum at x = 3.

(G) z<sorz<t.
(k) R is not transitive or R is reflexive.

(1) If the function g has a relative minimum at * = 2 or x = 4, then g does
not have a relative minimum at x = 3.

~ (~ P VI~ Q) A (~ 5]

QA(~ NV~ (PAIQA(~ NV~ ((~ PAQ).
[PA(~ @IV~ P)A(~ RV [(~ P)AS]
(~P)V(QA(~ (~ P)IAQ)V R.

12. (a

(a)
(b)
()

)

[
[
[
ON
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13. (a) i
A B AVUB
T T F
F T T
T F T
F F F
YA B AVB AAB ~(AANB) (AVB)A~ (AAB)
T T T T F F
F T T F T T
T F T F T T
F F F F T F
Since the final columns of the two tables are identical, the two propo-
sitions have the same truth table, thus they are equivalent.
(b) i
A B ANANDB A NOR B
T T F F
F T T F
T F T F
F F T T
" "I B ANANDB ANORB (ANAND B)V (A NOR B)
T T F F F
F T T F T
T F T F T
F F T T T
Since the third and last columns are equal, the propositions are equiv-
alent.
"I B ANANDB ANORB (4 NAND B) A (A NOR B)
T T F F F
F T T F F
T F T F F
F F T T T
Since the fourth and last columns are equal, the propositions are
equivalent.

1.2 Conditionals and Biconditionals

1. (a) Antecedent: squares have three.
Consequent: triangles have four sides.

(b) Antecedent: The moon is made of cheese.
Consequent: 8 is an irrational number.
(c) Antecedent: b divides 3.
Consequent: b divides 9.
(d) Antecedent: f is differentiable.
Consequent: f is continuous.
(e) Antecedent: a is convergent.
Consequent: a is bounded.

(f) Antecedent: f if integrable.
Consequent: f is bounded.

(2) Antecedent: 141 =2.
Consequent: 1+ 2 = 3.
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(h)
(i)

Antecedent: the fish bite.
Consequent: the moon is full.

Antecedent: An athlete qualifies for the Olympic team.
Consequent: The athlete has a time of 3 minutes, 48 seconds or less ( in
the event).

Converse: If triangles have four sides, then squares have three sides.
Contrapositive: If triangles do not have four sides, then squares do not have
three sides.

Converse: If 8 is irrational, then the moon is made of cheese.
Contrapositive: If 8 is rational, then the moon is not made of cheese.

Converse: If b divides 9, then b divides 3.

Contrapositive: If b does not divide 9, then b does not divide 3.
Converse: If f is continuous, then f is differentiable.
Contrapositive: If f is not continuous, then f is not differentiable.

Converse: If a is bounded, then a is convergent.
Contrapositive: If a is not bounded, then a is not convergent.

Converse: If f is bounded, then f is integrable.
Contrapositive: If f is not bounded, then f is not integrable.

Converse: If 1 +2 =3, then 1 +1 = 2.
Contrapositive: If 1 +1 # 2, then 1 + 2 # 3.

Converse: If the moon is full, then fish will bite.
Contrapositive: If the moon is not full, then fish will not bite.

Converse: A time of 3 minutes, 48 seconds or less is sufficient to qualify for
the Olympic team.

Contrapositive: If an athlete records a time that is not 3 minutes and 48
seconds or less, then that athlete does not qualify for the Olympic team.

() may be either true or false.
() must be true.
@ must be false.
() must be false.
() must be false.

Antecedent: A(x) is an open sentence with variable x.
Consequent: ~ (Vx)A(x) is equivalent to (3x) ~ A(x).

Antecedent: Every even natural number greater than 2 is the sum of two
primes.
Consequent: Every odd natural number greater than 5 is the sum of three
primes.

Antecedent: A is a set with n elements.
Consequent: P(A) is a set with 2" elements.

Antecedent: S is a subset of N such that 1 € S and, for alln € N, if n € S,
thenn+4+1€S.
Consequent: S = N.

Antecedent: A is a finite set with m elements and B is a finite set with n
elements.
Consequent: A X B = mn.
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(f) Antecedent: R is a partial order for A and B C A.

Consequent: If sup(B) exists, it is unique.

(g) Antecedent: A, B, C, and D are sets, f is a function from A to B, g is a
function from B to C, and h is a function from C' to D.

Consequent: (hog)o f=ho(go f).
(h) Antecedent: A and B are disjoint finite sets.

Consequent: AU B is finite and AUB = A + B.

(a) true (b) false (c) true (d) true
(e) true (f) true (g) true (h) false
(a) true (b) true (c) true (d) true
(e) false (f) true (¢) false (The
symbol for
helium is He.)
(h) true (i) false (j) true (k) false
(a)
P Q QAP P=(QAD)
T T T T
F T F T
T F F F
F F F T
(b)
P Q ~P ~P=Q Q&P (~P=Q)VvV(Q<&P)
T T F T T T
F T T T F T
T F F T F T
F F T F T T
(c)
P Q ~Q Q&P ~Q=(Q<P)
T T F T T
F T F F T
T F T F F
F F T T T
(d)
P Q PVQ PAQ (PVQ) = (PAO)
T T T T T
F T T F F
T F T F F
F F F F T
(e) P Q@ R PAQ QAR PVR (PAQ)V(QAR) (PAQ)V(QAR)=PVR
T T T T T T T T
F T T F T T T T
T F T F F T F T
Fr T I I T I T
T T F T F T T T
F T F F F F F T
T F F F F T F T
F F F F F F F T




1 LOGIC AND PROOFS 9

()

P Q@ R S Q=5 Q=R PVQ SVR (Q=S)AN(Q@=R)
T T T T T T T T T
F T T T T T T T T
T F T T T T T T T
F F T T T T F T T
T T F T T F T T F
F T F T T F T T F
T F F T T T T T T
F F F T T T F T T
T T T F F T T T F
F T T F F T T T F
T F T F T T T T T
F F T F T T F T T
T T F F F F T F F
F T F F F F T F F
T F F F T T T F T
F F F F T T F F T
P Q@ R S (PVQ)=(SVR) [(@=5A(Q=R)]=[(PVQ)=(SVR)
T T T T T T
F T T T T T
T F T T T T
F F T T T T
T T F T T T
F T F T T T
T F F T T T
F F F T T T
T T T F T T
F T T F T T
T F T F T T
F F T F T T
T T F F F T
F T F F F T
T F F F F F
F F F F T T

8. (a)
P Q ~P P=>Q (~P)VQ
T T F T T
F T T T T
T F F F F
F F T T T

Since the fourth and fifth columns are the same, the propositions P = @
and (~ P) V Q are equivalent.

P Q P=Q Q=P P&Q (P=Q Ar(Q=P)
T T T T T T
F T T F F F
T F F T F F
F F T T T T

Since the fifth and sixth columns are the same, the propositions P < @
and (P = Q) A (Q = P) are equivalent.

P Q@ ~Q P=Q ~(P=Q) PA~Q

T T F T F F
F T F T F F
T F T F T T
F F T T F F

Since the fifth and sixth columns are the same, the propositions ~ (P = Q)
and PA ~ @ are equivalent.
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(d

(e

(f

(g

)

)

)

)

F

T
T
T

P Q ~P ~Q PAQ ~(PAQ) P=~Q P=~Q
T T F F T F F
F T T F F T T
T F F T F T T
F F T T F T T

10

Since the sixth, seventh and eighth columns are the same, all three propo-
sitions are equivalent.

Q=R P=(

I
=
3
Q

~
>

I
=y

RS RS REE
oA ETs A0
mmmmE A8 A
SemTmEsas

Gl (S
el lieo B Mo ey Mo e |

mERERrssgL

Since the fifth and seventh columns are the same, the propositions are

equivalent.
P Q@ R QAR P=(QAR) P=Q P=R (P=Q)A(P=R)
T T T T T T T T
F T T T T T T T
T F T F F F T F
FoF T F T T T T
T T F F F T F ¥
F T F F T T T T
T F F F F F F F
F F F F T T T T

Since the fifth and eighth columns are the same, the propositions are
equivalent.

PVQ PVQ

Nt

=R P=R Q=R

(P=R)

(

)

mETaE STy
mmaaE TR RO
THEEEAE S AE A
mERssEs SR
BEEEE s RS
BEsmER RS
BETEE R RS

A
T
T
T
T
F
F
I

=

Since the fifth and seventh columns are the same, the propositions are
equivalent.

9. (a) yes (b) no (c) yes
(d) yes (e) no (f) no

10.

(a) [(f has a relative minimum at z)A(f is differentiable at )] = (f/(x0)

0)

(
[
(
(
(

x is irrational) = [(x is real)A ~ (z is rational)]
(6= )V (= 1) > (o] = 1)

xo is a critical point for f) < [(f'(z¢) = 0) V (f'(xo) does not exist)]

S is compact) < [(S is closed) A (S is bounded)]
B is invertible) < (det B£0)
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11.

12.

(h)
(i)
()
(k)
(a)

(a)

(b)

(6>n—3)=(n>4)V(n>10)
(z is Cauchy) (z is convergent)
(limy 4, f(x) = f(z0)) = (f is continuous at z)
[(

f is differentiable at xo) A (f is strictly increasing at xo)] = (f’(x0))

Let S be “I go to the store” and R be “It rains.” The preferred translation:
is ~ S = R (or, equivalently, ~ R = S). This could be read as “If it
doesn’t rain, then I go to the store.”

The speaker might mean “I go to the store if and only if it doesn’t rain
(8 =~ R) or possibly “If it rains, then I don’t go to the store” (R =~ 5.

There are three nonequivalent ways to translate the sentence, using the
symbols D: “The Dolphins make the playoffs” and B: “The Bears win all
the rest of their games.” The first translation is preferred, but the speaker
may have intended any of the three.
~ B =~ D or, equivalently, D = B
~ D =~ B or, equivalently, B = D
~ B <~ D or, equivalently, B < D

Let G be “You can go to the game” and H be “You do your homework
first.”

It is most likely that a student and parent both interpret this statement as
a biconditional, G < H.

Let W be “You win the lottery” and 7" be “You buy a ticket.” Of the three
common interpretations for the word “unless,” only the form ~ T =~ W
(or, equivalently, W = T') makes sense here.

Q
"~
<

SR ~PA~Q ~R—>(~DPA~Q)

s SY
R e R R R IS
el il o N N B Bav!
MR REEA A S <
R R RN (S
se eIl lies M Meo s Mies|

Hmm eSS S

Since the fifth and seventh columns are the same, (P V @) = R and
~ R = (~ PA ~ Q) are equivalent.

PAQ (PAQ)=R ~Q ~R PA~R (PA~R)=~Q

RS R R RS B
THAEART™T RSO
Sl R RN Rl ey
el Ml M B Mo B |
HHERma33s
Hemm s
HHESETEE e
sl B e > B> Bes M
HeSmaaas

Since the fifth and ninth columns are the same, the propositions (PAQ) =
R and (PA ~ R) =~ @ are equivalent.
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()

P Q R QAR P= QAR ~QUV~R (~QV~R) =~DP
T T T 1T T F T
F T T T T F T
T F T F F T F
F F T F T T T
T T F F F T F
F T F F T T T
T F F F F T F
F F F F T T T

Since the fifth and seventh columns are the same, the propositions P =
(Q AR) and (~ QV ~ R) =~ P are equivalent.

(d)

QVR P=(QVR) PA~R (PAN~R)=Q

SRR R N
MEAREES RO
SRR RN RN
CECEERERERE RSN
CECEERERERERERE
mHH S
HEHERRA8 S

Since the fifth and seventh columns are the same, the propositions P =
(Q VR) and (PA ~ R) = @ are equivalent.

(© P=Q (P=Q=R P\~Q (PA~QVE

CESECRENC RS R DY
CECRERERCECRE R Fa
eslies il N N N B | e
HmEsama s
Rl R RS RS RS
RSO EE R
CREECRCRE NSRS

Since the fifth and seventh columns are the same, the propositions (P =
Q) = R and (PA ~ Q) V R are equivalent.

(f)

P Q PoQ ~DPVQ ~QVDP (~PVQA(~QVD)
T T T T T T
F T F T F F
T F F F T F
F F T T T T

Since the third and sixth columns are the same, the propositions P < Q
and (~ PV Q) A (~ QV P) are equivalent.

13. (a) If 6 is an even integer, then 7 is an odd integer.

(b) If 6 is an odd integer, then 7 is an odd integer.

(¢) This is not possible.
)

(d) If 6 is an even integer, then 7 is an even integer. (Any true conditional
statement will work here.)

14. (a) If 7 is an odd integer, then 6 is an odd integer.
(b) This is not possible.
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(¢) This is not possible.

(d) If 7 is an odd integer, then 6 is an odd integer. (Any false conditional
statement will work here.)

15. (a) Converse: If f’(zg) = 0, then f has a relative minimum at zo and is
differentiable at x¢. False: f(x) = 23 has first derivative 0 but no minimum
at g = 0.

Contrapositive: If f/(xg) # 0, then f either has no relative minimum at zg
or is not differentiable at xg. True.

(b) Converse: If n = 2 or n is odd, then n is prime. False: 9 is odd but not
prime.
Contrapositive: If n is even and not equal to 2, then n is not prime. True.
(c) Converse: If z is irrational, then z is real and not rational. True
Contrapositive: If = is not irrational, then x is not real or x is rational. True
(d) Converse: If |z| = 1, then z =1 or x = —1. True.
Contrapositive: If |z| # 1, then x # 1 and = # —1. True.

16. (a) tautology (b) tautology (c) contradiction
(d) neither (e) tautology (f) neither
(g) contradiction (h) tautology (i) contradiction
(j) neither (k) tautology (1) neither
17. (a)
P Q P>Q ~P ~Q ~P=>~Q
T T T F F T
F T T T F F
T F F F T T
F F T T T T

Comparison of the third and sixth columns of the truth table shows that
P = @ and ~ P =~ @ are not equivalent.

(b) We see from the truth table in part (a) that both propositions P = @ and
~ P =~ @Q are true only when P and @ have the same truth value.

(¢) The converse of P = @ is Q = P. The contrapositive of the inverse of
P = Qis ~~ @ =~~ P, so the converse and the contrapositive of the
inverse are equivalent.

The inverse of the contrapositive of P = @ is also ~~ @) =~~ P, so it
too is equivalent to the converse.

1.3 Quantifiers
1. (a) ~ (Vx)(x is precious= x is beautiful) or (3 z)(x is precious and z is not
beautiful)
(b) (Vx)(z is precious=- x is not beautiful)
(¢) (3 x)(x is isoscelesAx is a right triangle)

(d) (Vx)(z is a right triangle= =z is not isosceles) or ~ (3 x)(r is a right
triangleAz is isosceles)

(e) (Vz)(x is honest)V ~ (3 z)(z is honest)

(f) (3 z)(x is honest) A (3 x)(z is not honest)

(g) (Vx)(x £0= (x >0V z<0))

(h) (Vx)(z is an integer = (x > —4Vx < 6)) or (Vr € Z)(x > —4V x < 6)
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(i) (Vz)By)(z >y)
() (v2)Fy)(z <)
(k) (Vx)(Yy)[(z is an integer Ay is an integer Ay > x) = (3z)(y > z > x)] or
Ve eZ)Vy € Z)[y >x = (F2)(y > z > x)]
(1) (3 z)(x is a positive integer and x is smaller than all other positive integers)
or (3 z)(x is a positive integer and (Vy)(y is a positive integer = = < y))
or (Fx€Z)x>0A(VyeZ)(y>0=y > x)]
(m) (Vz)(~ (Yy)(x loves y)) or ~ (I z)(Vy)(z loves y) or (Vz)(F y)(z does not love y)

o

) (
(n) (Vx)(3 y)(x loves y)
(o) (Vx)(z >0= (Fy)(2¥ =x)
(a) (

a) (Vx)(z is precious= z is beautiful)
All precious stones are beautiful.
(b) (3 z)(« is preciousAzx is beautiful)

There is a beautiful precious stone, or Some precious stones are beautiful.
(¢) ~ (3 x)(x is isosceles and x is a right triangle) or (Vz)(x is not isosceles or
x is not a right triangle) or (Vz)(z is right triangle= x is not isosceles) or
(Vz)(x is isosceles= x is not a right triangle).

There is no isosceles right triangle.
(d) (3 x)(z is isoscelesAz is a right triangle)
There is an isosceles right triangle.
(e) (3 x)(z is dishonest) A (3 z)(x is dishonest)
Some people are honest and some people are dishonest.

(f) (Vz)(zx is honest) V (Vz)(x is dishonest)
All people are honest or no one is honest.

(g) (3z)(x # 0 A x is not positive Az is not negative)
There is a nonzero real number that is neither positive nor negative.

(h) (3x)(z is an integer Ax < —4 Az >6))or (Jr € Z)(z < —4 Az >6)
There is an integer that is less than or equal to —4 and greater than or
equal to 6.

(i) Gz)(vVy)(z <y)
Some integer is less than or equal to every integer, or There is a smallest
integer.

(1) Go)(Vy)(x =y)

Some integer is greater than every other integer, or There is a largest
integer.

(k) (3x)(3y)[z is an integer Ay is an integer y > z A (Vz)(z <y Va < 2)] or
(FxeZ)FyecZ)y>xn(¥V2)(z<yVz<z)]

There is an integer = and a larger integer y such that there is no real number
between them.

(1) (Vx)(z is a positive integer=- (Jy)(y is a positive integer) A z > y) or
(Vx e Z)x <0V (Jy € Z)(y > 0 Az > y)]. For every positive integer there
is a smaller positive integer.

Or, ~ (3z)(x is a positive integerA(Vy)(y is a positive integer= = < y)) or
~ 3z eZ)r>0A Ny eZiy>0=y>uz)
There is no smallest positive integer.
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~

8.

9.

(m) (3 2)(Vy)(x loves y)
There is someone who loves everyone.
(n) (3 2)(Vy)(x does not loves y) or ~ (Vz)(3 y)(x loves y).
Somebody doesn’t love anyone.
(0) Fz)(x>0A~ Fy)(2Y =2)V (Ty)32)[y # 2z N2Y =z A2% =x])
There is a positive real number x for which there is no unique real number
y such that 2¥ = .

There is a nonzero complex number such that either every product of that
number with any complex number is different from m, or there are at least
two different complex numbers whose products with the given number are
equal to 7.

(a) (3k)(k is an integer Ax = 2k) or (3k € Z)(x = 2k)
(b) (3y)(j is an integer Aw =25+ 1) or (Fj € Z)(x =25+ 1)
(¢) (3k)(k is an integer Ab = ak) or (Fk € Z)(b = ak)
(d) n#1AVmeZ)(mdividesn = (m=1Vm=n)
)

e) n# 1A (3m e Z)(m dividesn A (m #1Vm#n)

(

(a) (Vz,y € A)(xRy = yRx)

(b) (Vz,y,z € A)(xRy NyRz = zRz)
(

)
(c) (Vo,y € A)(f(z) = f(y) =z =y)
(d) (Vo,ye A)(z-y=y- )

The first interpretation may be translated as

(Vz)[x is a person = (Vy)(y is a tax = « dislikes y)].
The other sentences may be translated as

(Vz)[z is a person = (Jy)(y is a tax = «x dislikes y)].
(3z)[z is a person = (Vy)(y is a tax = x dislikes y)].
(Fz)[x is a person = (Jy)(y is a tax = x dislikes y)].
(

a) T,U,VandW (b)) T () T,U,V ()T

(a) Proof. Let U be any universe. The sentences ~ (3z)A(x) is true in U
iff (3x)A(x) is false in U
iff the truth set for A(x) is empty
iff the truth set for ~ A(z) is U iff (Vx) ~ A(x) is true in U.

(b) Let A(x) be an open sentence with variable . Then ~ A(x) is an open
sentence with variable z, so we may apply part (a) of Theorem 1.3.1(b).
Thus ~ (Vz) ~ A(z) is equivalent to (3 =) ~~ A(x), which is equivalent to
(3 2)A(x). Therefore ~ (3 x)A(x) is equivalent to ~~ (Va) ~ A(z), which
is equivalent to (Vz) ~ A(z).

(a) false (b) true (c) false (d) true
(e) false (f) true (g) false (h) true
(i) true (j) false (k) false (1) true

a) Every natural number is greater than or equal to 1.

(
(

)
)
b) Exactly one real number is both nonnegative and nonpositive.
(c) Every natural number that is prime and different from 2 is odd.
)

(d) There is exactly one real number whose natural logarithm is 1.
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10.

11.

12.

(e)
(f)
(8)

There is no real number whose square is negative.
There exists a unique real number whose square is 0.

For every natural number, if the number is odd, then its square is odd.

(a) true (b) false (c) false (d) false
(e) true (f) false (g) true (h) false
(i) false (j) true (k) false

(a)

(b)

()
(a)

(b)

(c)

(d)

Let U be any universe and A(x) be an open sentence. Suppose (Jlz)A(x)
is true in U. Then the truth set for A(x) has exactly one element, so the
truth set for A(z) is nonempty. Thus (3z)A(x) is true in U.

Let A(z) be the sentence 22 = 1 and let the universe be the real numbers.
Then the truth set for A(x) is {1, —1} so (3x)A(x) is true but (Ilz)A(z) is
false in U.

Let U be any universe and suppose (3lx)A(z) is true. Then the truth set
for A(x) contains exactly one element xy. As in part (a), (3z)A(x) is true.
Suppose u and z are in U and A(y) and A(z) are true. Then u and z must
both be zg, so y = z. Thus (Fx)A(x) A (Vy)(V2)(A(y) AN A(z) = y = z) is
true.

On the other hand, suppose (3x)A(z) A (Vy)(V2)(A(y) N A(z) = y = 2) is
true in U. Since (3z)A(z) is true, the truth set for A(x) contains at least
one element. Since (Vy)(Vz)(A(y) A A(z) = y = z) is true, the truth set for
A(x) contains only one element Thus (3lz)A(z) is true in U.

Let U be any universe. Suppose (3!z)A(z) is true in U. Then the truth set
for A(z) contains exactly one element, xo. Then for every y in U, if A(y)
then w9 = y. Thus z is in the truth set of A(z) A (Vy)(A(y) = = = vy),
so (Jz)[A(z) A (Vy)(A(y) = = = y)] is true in U. Conversely, suppose
(Fz)[A(z) A (Vy)(A(y) = = = y)] is true in U. Let x¢ be an element in the
truth set of A(z) A (Vy)(A(y) = = = y). Then zq is the only element in the
truth set of A(z). Thus (3'z)A(z) is true in U.

(Va)(~ A(z) v By)(F2)(A(y) A A(2) Ay # 2))

f is continuous at a iff (Ve)le > 0 = (36)(6 > 0 A (Vx)(Jx — zo] < § =
£(2) — f(a)] <€

Let the universe be the set R of real numbers, and let f be a function

from R to R. The Mean Value Theorem asserts that (Va)(Vd)([(a <
b) A (f is continuous on [a,b] A (f is differentiable on (a,b))]) =

_ fb) = f(a)
==

A~ —

(Fo)l(a<e<b)A(f'(e)

where “f is continuous on [a, b]” means:

(Vzo)(a < z9p < b = (Ve)[e > 0 = (V6)(6 > 0N (Va)(Jlx — 20| < 6 =
|f(z) — f(zo)| < €)] and “f is differentiable on (a,b)” means:

(Vzo)(a < zo < b= 3 d)[f (x0) = d].

Let the universe be the set R of real numbers, and let f be a function
from R to R. Then lims_,, f(z) = L means: (Ve)(e > 0 = (F6)[6 >
0N (Vz)(|z —al < 6= |f(x) — L| <€)])

A denial of “f is continuous at a” is: (Je > 0)(V8)(6 > 0 = (Fx)(Jz — xo| <
SN |f(z) = fla)] = €).

A denial of the Mean Value Theorem is: (Ja)(3b)[a < b A f is continuous
in [a,b] A f is differentiable on (a,b) A (Ve)(a < c < b= f'(c) # W)]
A denial of “lims_, f(z) = L is: (€)(e > 0N (V)[6 > 0= (Fx)(Jxr—al <
SN |f(z) = L] = €])
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13. (a)

(b)
()
(d)

()

This is not a denial. If the universe has only one element a and P(a) is
true, then both the statement and (3lx)P(z) are true.

This is a denial.
This is a denial.

This is not a denial. If the universe has only one element a and P(a) is
false, then both the statement and (3!z)P(z) are false.

This statement is not a denial. If the universe has more than one element
the statement implies the negation of (3lx) P(x), but if (Vz) P(z), then both
the statement and (3lx)P(zx) are false.

14. For every backwards E, there exists an upside down A! [This is a joke.]

1.4 Basic Proof Methods I

1. (a)

(d)

Suppose (G, ) is a cyclic group.

Thus, (G, %) is abelian.
Therefore, if (G, ) is a cyclic group, then (G, ) is abelian.

Suppose B is a nonsingular matrix.

Thus, the determinant of B is not zero.
Therefore, if B is a nonsingular matrix, then the determinant of B is not
7er0.

Suppose A is a subset of B and B is a subset of C.

Thus, A is a subset of C.
Therefore, if A is a subset of B and B is a subset of C, then A is a subset
of C.

Suppose the maximum value of the differentiable function f on the closed
interval [a, b] occurs at x.

Thus, either zg = a or g = b or f'(xg) = 0. Therefore, if the maximum
value of the differentiable function f(z) on the closed interval [a,b] occurs
at xo, then either xg = a or xg = b or f'(xg) = 0.

Let A be a diagonal matrix. Suppose all the diagonal entries of A are
nonzero.

Then A is invertible. Therefore A is invertible whenever all its nonzero
entries are nonzero

2. If A and B are invertible matrices, then AB is invertible.

(a)

Suppose that A and B are invertible matrices.

Thus, AB is invertible.

Therefore, if A and B are invertible matrices, then the product AB is
invertible.
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3.

4.

(b) Suppose AB is invertible.

Thus, A and B are both invertible.
Therefore, if AB is invertible, then A and B are both invertible.

One could construct a truth table with 16 rows and observe that every row has
the value true for the main connective =. However, it is also correct to show,
without actually making the truth table, that no row could have the value F
for the main connective =-. Suppose this connective had the value F. Then the
antecedent [(~ B = M)A ~ L A (~ M V L)] must have the value T and the
consequent B must have the value F. Then each of ~ B = M, ~ Land ~ MV L
has value T. Then L must have the value F, and since ~ M V L has value T, M
has the value F. Since ~ B has the value T and M has the value F, ~ B = M
has the value F. But ~ B = M has value T. This contradiction shows that every
row of the truth table has value T, so the propositional form is a tautology.

(a) Professor Plum. The crime took place in the library, not the kitchen. By
fact (i), if the crime did not take place in the kitchen, then Professor Plum
is guilty. Therefore Professor Plum is guilty.

(b) Miss Scarlet. The crime did not take place in the library. By fact (iv), the
weapon was the candlestick. By fact (iii) Miss Scarlet is not innocent.

(¢) Professor Plum. The crime was committed at noon with the revolver. By
(iii) Miss Scarlet is innocent. By fact (v) either Miss Scarlet or Profes-
sor Plum is guilty. Therefore Professor Plum is guilty.

(d) Miss Scarlet and Professor Plum. The crime took place at midnight in the
conservatory. By fact (ii) Professor Plum is guilty. The crime did not take
place in the library. By fact (iv), the weapon was the candlestick. By fact
(iii) Miss Scarlet is guilty also.

(a) Suppose that x and y are even. Then there are integers n and m such that
x = 2n and y = 2m. By substitution, x +y = 2n + 2m = 2(n + m). Since
= + y is the product of 2 and an integer, = + y is even.

(b) Suppose that x is an even integer, and y is an integer. Then there is an
integer k such that z = 2k. Then zy = (2k)y = 2(ky). Thus zy is twice the
integer ky, so xy is even.

(c) Suppose that z and y are even integers. Then there exist integers n and m
such that © = 2n and y = 2m. Therefore, xy = 2n - 2m = 4nm. Since nm
is an integer, xy is divisible by 4.

(d) Suppose that = and y are even integers. Then there are integers k and m
such that « = 2k and y = 2m. Then 3z — 5y = 3(2k) —5(2m) = 2(3k —5m).
Since 3k — 5m is an integer and 3z — by = 2(3k — 5m), 3z — by is even.

(e) Suppose that = and y are odd integers. Then there exist integers n and
m such that * = 2n + 1 and y = 2m + 1. By substitution, x + y =
2n+ 1)+ (2m+1) = 2(n +m + 1). Since =z + y is twice an integer,
T + 1y is even.

(f) Then there exist integers k and m such that © = 2k + 1 and y = 2m + 1.
Then 3z — 5y = 3(2k + 1) —5(2m + 1) = 2(3k — 5m — 1). Since 3z — 5y =
2(3k —5m — 1) and 3k — 5m — 1 is an integer, we conclude that 3z — 5y is
even.

(g) Then there are integers k and m such that z = 2k + 1 and y = 2m + 1.
Then zy = (2k+ 1)(2m + 1) = 2(km + k +m) + 1. Since km + k +m is an
integer, xy is odd.
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(h) Suppose that = is even and y is odd. Then there exist integers n and m
such that = 2n and y = 2m + 1. Therefore,  +y = (2n) + 2m + 1) =
2(n +m) + 1. Since n + m is an integer, = + y is odd.

(i) Suppose that z is even and y is odd. Then there exist integers k and m
such that z = 2k and y = 2m + 1. Then zy = (2k)(2m + 1) = 4km + 2k =
2(2km+1). Since k+m is an integer and z —y = 2(k+m)+ 1, we conclude
that zy is odd.

6. (a) If a=0or b=0, then |ab] = 0 = |al|b]
Otherwise there are four cases.
Case 1. If a > 0 and b > 0, then |a| = a and |b| = b. Also, ab > 0, so
|ab| = ab = |al|b|.
Case 2. If a > 0 and b < 0, then |a| = a and |b] = —b. Also, ab < 0, so
|ab] = —ab = a(—b) = |al|b].
Case 3. If a < 0 and b > 0, then |a|] = —a and |b] = b. Also ab < 0, so
|ab] = —ab = (—a)b = |al|b]-
Case 4. If a < 0 and b < 0, then |a| = —a and [b] = —b. Also ab > 0, so
|lab| = ab = (—a)(=b) = |al[b].
In every case, |ab| = |a||b].

(b) Case 1.Let a—b=0. Thenb—a=0,s0|a—b =0=1[b—al.

Case 2. Let a—b > 0. Thenb—a < 0,s0 [a—bl =a—b=—(b—a) = |b—al.
Case 3. Let a—b < 0. Then b—a > 0,s0 [a—b| = —(a—b) =b—a = |b—al.
Thus |a — b| = |b — a| in every case.

(c) If a =0, then |¢] =0= %. Otherwise there are four cases.

B

=

Case 1. Let a > 0 and b > 0. Then |%| = £

Case?.Leta>O>b.Then%<O,SO\%|=—%:(_“b):%l
Case 3. Let a <0 <b. Then § <0,s0 [§|=—-% = _ba):Jl%l‘.
Case4.Leta<0andb<0.Then%>0,So|%|=%:E:’Z;:%

(d) Case 1: a > 0. There are three subcases.
Subcase la: b > 0. Then a +b> 0, so |a +b] =a+ b= |a| + |b].
Subcase 1b: b < 0 and @ > —b. Then a+b > 0,50 [a+b = a+b <
a+ (=b) = |a| + |b].
Subcase 1c: b < 0 and @ < —b. Then a +b < 0, 0 |[a + b = —(a +b) =
—a—b<a-—>b=|a|+ bl
Case 2: a < 0. There are three subcases.
Subcase 2a: b < 0. Then a+b < 0,50 |[a+b| = —(a+b) = (—a) + (=b) =

|a] + [b].
Subcase 2b: —a > b > 0. Then a+b < 0, s0 |a+b| = —(a+b) = (—a)+(—b) <
—a+b=|a| + b

Subcase 2¢: b > —a > 0. Then a+b > 0, 50 |a+b| = a+b < —a+b = |a|+|b|.
In every case, |a + b| < |a| + |b].
(e) Assume |a| < b. Then there are two cases to consider.

Case 1: @ > 0. Since b > |a| > 0, we have —b < 0 < a = |a|] < b, so
—b<a<hb.

Case 2: a < 0. Then —a = |a|] < b, 80 —b < a < 0 < —a < b and thus
—b<a<hb.

Therefore |a| < b implies —b < a <b
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7.

8.

(f) Assume —b < a < b. There are two cases.
Case 1: @ > 0. Then a = |a|, so |a|] < b.
Case 2: a < 0. Then —a = |al, so |a| = —a < —(=b) = b.
Thus —b < a < b implies |a| < b.

(a) Suppose a is an integer. Then 2a — 1 = 2a — 2+ 1 = 2(a — 1) 4 1. Since
a — 1 is an integer, 2a — 1 is odd.

(b) Let a be an integer. Suppose a is even. Then a = 2k for some integer k.
Therefore a +1 =2k 4+ 1, so a + 1 is odd.

(c) Assume that a is an odd integer. Then for some integer k, a = 2k + 1. Then
a+2=2k+3=2(a+1)+ 1. Since a + 1 is an integer, a + 2 is odd.

(d) Let a be an integer. If a is even, then by Exercise 7(b) a + 1 is odd. By
Exercise 5(i) a(a + 1) is even. On the other hand, if a is odd, then by
Exercise 5(e) a + 1 is even. Then, again by Exercise 5(i), a(a + 1) is even.

(e) Let a be an integer. Then a =1 - a, so 1 divides a.

(f) Let a be an integer. Then a = a - 1, so a divides a.

(g) Suppose a and b are positive integers and a divides b. Then for some integer

k, b = ka. Since b and a are positive, k must also be positive. Since k is
also an integer, 1 < k. Therefore, a =a-1<a-k=05,s0a <b.

(h) Let a and b be integers. Suppose that a divides b. Then b = ka for some
integer k, so bc = kac = (kc)a. Since ke is an integer, a divides be.

(i) Suppose a and b are positive integers and ab = 1. Then a divides 1 and b
divides 1. By part (g), a < 1 and b < 1. But a and b are positive integers,
soa=1and b=1.

(j) Let a and b be positive integers. Suppose a divides b and b divides a. Then
there is a positive integer n such that an = b and a positive integer m such
that bm = a. Thus a = bm = (an)m = a(nm). Then nm =1, son =1 and
m = 1 by part (i). Since n =1 and an = b, a = b.

(k) Let a, b, and ¢ be integers. Suppose a divides b and ¢ divides d. Then b = ka
and d = jc for some integers k and j. Thus bd = (ka)(jc) = (kj)(ac), and
k7 is an integer, so ac divides bd.

(1) Let a, b, and ¢ be integers. Suppose ab divides c¢. Then ¢ = k(ab) for some
integer k. Thus ¢ = (kb)a, and kb is an integer, so a divides c.

(m) Let a, b, and ¢ be integers. Suppose ac divides be. Then there is an integer
k such that (ac)k = be. Thus kac = be, so that ka = b. Therefore a divides
b.

(a) Case 1: n is even. Then n = 2k for some natural number k, so
n4n+3=2k)>2+2k) +3=4k>+2k+2+1 =22+ k+1)+1.

Since 2k% + k + 1 is an integer, n% + n + 3 is odd.
Case 2: n is odd. Then n = 2k + 1 for some natural number k, so

n4n+3 = 2k+1)2+2k+1)+3=4k +4k+14+2k+14+3
4k% + 6k + 5 = 2(2k* + 3k) + 1.

(b) By Exercise 7(d), n> + n = n(n + 1) is even. Since n? + n is even and 3 is
odd, by Exercise 5(h), n? +n 4 3 is odd.
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9.

10.

11.

(a)

()

(a)

(b)
()

We want to show TT“’ > /Ty, which could be derived from (‘rTJ””)2 >
xy, which would follow from (z + y)? > 4xy, which would follow from
x% + 2zy + y? > 4zy, which would follow from z? — 2zy + y? > 0, which
would follow from (z —y)? > 0.

Proof. Suppose = and y are nonnegative real numbers. Then (z —y)? > 0,
so 2 — 2zy 4+ y2 > 0. Thus 22 + 2zy + y> > 4y, so (%9)2 > xy. Since
z and y are nonnegative real numbers, \/(z +y)? = z +y and /7y is a
real number. Therefore %y > /xy. We used the fact that x and y are
nonnegative in the penultimate sentence in the proof.

We want to show a divides 3¢, which would follow if a divides c¢. To show
a divides ¢, we could write ¢ as the difference or sum of two quantities
divisible by c.

Proof. Suppose a divides b and a divides b + ¢. Then using the theorem
(proved as an example) on page 34, a divides the difference (b+¢) — b = c.
Then a divides their difference (b +c) —b = c.

We want to show az? + bz + ¢ = 0 has two real solutions. This would follow
if the discriminant % — 4ac > 0.

Proof. Suppose ab > 0 and bc < 0. Then the product ab’c < 0. Since
b> > 0, ac < 0. Then —4ac > 0, so b?> — 4ac > 0. Therefore by the
discriminant test, the equation az? + bz + ¢ = 0 has two real solutions.

We want to show 2x + 5 < 11, which would follow from 2z < 6 or z < 3.

Proof. Suppose x* + 222 < 0. Then 2%(x +2) < 0, so z + 2 < 0. Thus
z < —2, s0 x < 3. Therefore 2x < 6, so 22 +5 < 11.

To show that the triangle is a right triangle, we want to show ¢? = a? + b2.

Proof. Suppose a triangle has sides of length a, b, and ¢, where ¢ = v/2ab
and a = b. Then ¢? = (v/2ab)? = 2ab = 2a% = a? + a? = a® + b2. Therefore
the triangle is a right triangle.

Suppose A > C > B > 0. Multiplying by the positive numbers C' and B,
we have AC > C? > BC and BC > B2, so AC > B?. AC is positive, so
4AC > AC. Therefore 4AC > B?, so B?> —4AC < 0. Thus the graph must
be an ellipse.

Assume AC < 0. Then —4AC > 0, so B> —4AC > 0. Thus the graph is a
hyperbola.

Now assume B < C < 4A < 0. Then —B > —C > —4A > 0, so
B? = (—=B)(—B) > (—B)(—C) = BC and BC > 4AC. Thus B>—~4AC > 0,
so the graph is a hyperbola.

Assume that the graph is a parabola. Then B? — 4AC = 0, so B? = 4AC.
Assume further that BC' # 0. Then C' # 0, s0 A = %.

F. This proof, while it appears to have the essence of the correct reasoning,
has too many gaps. The first “sentence” is incomplete, and the steps are
not justified. The steps could be justified either by using the definitions or
by referring to previous examples and exercises.

C. If a divides both b and c, then there are integers ¢; and gy such that
b =aqy and ¢ = ago, but ¢1 and ¢o are not necessarily the same number!
C. It looks as if the author of this “proof” assumed that :c—i—% > 2. The proof

could be fixed by beginning with the (true) statement that (z — 1)% > 0
and ending with the conclusion that x + % > 2.
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(d)
()

F. This is a proof that if m is odd, then m? is odd. We cannot prove a
statement by proving its converse.

F. Although every statement is correct, the justification is incomplete.
Without additional explanation the reader might wonder whether the proof
means that =2 is always even and = + 1 is always odd. One approach to
a correct proof is to use the fact that z2 + x is always even and that the
product of an integer with an even integer is even. (Exercises 7(d) and

5(b).)

1.5 Basic Proof Methods I1

1. (a)

Suppose (G, %) is a not abelian.

Thus, (G, %) is not a cyclic group.
Therefore, if (G, ) is a cyclic group, then (G, ) is abelian.
Suppose the determinant of B is zero.

Thus, B is a singular matrix.
Therefore, if B is a nonsingular matrix, then the determinant of B is not
Zero.

Suppose the set of natural numbers is finite.

Therefore @ (where @ is some proposition).

Therefore ~ Q.

But @ and ~ @ is a contradiction.

Therefore, the set of natural numbers is not finite.

Suppose x is a real number other than 0. Then x has a multiplicative
inverse, because x - % =1.

Suppose = has another multiplicative inverse z.

Then P, where P is some proposition.

Then ~ P.
Therefore P and ~ P, which is a contradiction.
We conclude that x has only one multiplicative inverse.

Part 1. Suppose the inverse of the function f from A to B is a function
from B to A.

Therefore f is one-to-one.

Therefore f is onto B.
Part 2. Suppose f is one-to-one and onto B.

Therefore the inverse of f is a function from B to A.
Part 1. Suppose A is compact.

Therefore A is closed and bounded.
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Part 2. Suppose A is closed and bounded.

Therefore A is compact.

2. If A and B are invertible matrices, then AB is invertible.

(a)

(d)

Suppose AB is not invertible.

Thus, A is not invertible or B is not invertible.
Therefore, if A and B are invertible matrices, then AB is invertible.

Suppose A is not invertible or B is not invertible.

Thus, AB is not invertible.
Therefore, if AB is invertible, then A and B are both invertible.

Suppose both A and B are invertible, and AB is not invertible.
Therefore G (where G is some proposition).

Therefore ~ G.
Hence G and ~ G, which is a contradiction.

Therefore, if A and B are invertible matrices, then AB is invertible.

Suppose AB is invertible, and at least one of A or B is not invertible.

Therefore G.

Therefore ~ G.
Hence G and ~ G, which is a contradiction.
Therefore, if AB is invertible, then A and B are both invertible.

Part 1. Assume A and B are invertible.

Therefore AB is invertible.
Part 2. Assume AB is invertible.

Then A and B are invertible.
We conclude that A and B are invertible if and only if AB is invertible.

Suppose z + 1 is even (not odd). Then x + 1 = 2k for some integer k. Then
x=2k—1=2(k—1)+1and k — 1 is an integer, so z is odd. Therefore if
r is even, then x + 1 is odd.

Suppose z + 2 is even (not odd). Then there is an integer m such that
r+2=2m,s0x =2m—2=2(m—1). Since m — 1 is an integer, = is even.
Therefore if = is odd, then x + 2 is odd.

Suppose z is even. Then x = 2k for some integer k. Thus 22 = (2k)? = 4k>
and k? is an integer, so 22 is divisible by 4. Therefore if 22 is not divisible
by 4, then x is odd.

Suppose z is odd and y is odd. Then x = 2k + 1 and y = 2m + 1 for some
integers k and m. Then 2km+m+k is an integer and 2(2km+m+k)+1 =
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(@4

(8)

dkm +2m +2k+1 = (2k +1)(2m + 1) = 2y, so a2y is odd. Therefore if zy
is even, then x or y is even.

Suppose it is not the case that either z and y are both odd or = and y
are both even. Then one of x or y is even and the other is odd. We may
assume that z is even and y is odd. (Otherwise, we could relabel the two
integers.) Then = = 2k and y = 2m + 1 for some integers k and m. Then
r4+y=2k+2m+1=2(k+m)+1and k+m is an integer, so  + y is
odd. Therefore if x + y is even then « and y are both odd or both even.
Suppose z and y are not both odd. Then either x or y is even (or both are
even). We may assume z is even. Then = = 2m for some integer m. Thus
zy = (2m)y = 2(my), and my is an integer, so zy is even. Therefore if zy
is odd then both x and y are odd.

Suppose z is odd. Then 2 = 2m + 1 for some integer m. Then 22 — 1 =
(2m+1)2 —1 = 4m? + 4m = 4m(m + 1). By a previous exercise, m(m + 1)
is even, so m(m + 1) = 2k for some integer k. Thus 2 — 1 = 4(2k) = 8k,
so 8 divides 22 — 1. Therefore if 8 does not divide 22 — 1, then « is even.
Assume x divides z. Then z = zk for some integer k. Thus yz = y(zk) =
z(yk) and yk is an integer, so x divides yz. Therefore if x does not divide
yk, then = does not divide z.

Suppose z > 0. Then z +2 > 0, and so the product z(z +2) = 22 + 2z > 0.
Therefore if 22 + 2z < 0,then z < 0.

Suppose x < 2 or x > 3.

Ifz <2 thenz—2<0and z—3<0,s0 (z—2)(z—3)=2>-5x+6>0.
Ifz >3, thenz—3>0andz—2>1> 0,50 (z—3)(z—2) = 2?2 —5x+6 > 0.
Therefore if 22 — 52 + 6 < 0, then 2 < x and = < 3.

Suppose ¥ < 0. Since 22 > 0, 22 + 1 > 0. Thus the product z(xz? + 1) =
z% 4+ x < 0. Therefore if 3 + z > 0, then = > 0.

Suppose (—1,5) and (5, 1) are both on a circle with center (2,4). Then the
radius of the circle is /(2 +1)2 + (4 —5)2 = /10 and the radius of the

circle is y/(2 — 5)? + (4 — 1)? = \/18. This is impossible. Therefore (—1,5)
and (5,1) are not both on the circle.

Suppose the circle has radius less than 5 and there is a point (a,b) on the
circle and on the line y = x —6. Then b = a — 6 and (a —2)?+ (b—4)? < 25,
so (a—2)%+ (a —10)? < 25. Then 2a? — 24a + 79 < 0, or 2(a — 6)? +7 < 0.
But 2(a — 6)? +7 > 7, so 2(a — 6)? + 7 < 0 is impossible. Therefore the
circle does not intersect the line y = x — 6.

Suppose the point (0,3) is not inside the circle, but (3,1) is inside the
circle. Then the distance from (2,4) to (3,1) is less than the radius and
the distance from (2,4) to (0, 3) is greater. Therefore (2 —3)2 + (4 —1)2 <
(2—-0)2 4+ (4 —3)2. But 1 + 9 is not less than 4 + 1. Therefore if (0, 3) is
not inside the circle, then (3, 1) is not inside the circle.

Let a and b be positive integers. Suppose a divides b and a > b. Then there
is a natural number k such that b = ak. Since k is a natural number, k£ > 1.
Thus b = ak > a-1 = a. Thus b > a. This contradicts the assumption that
a > b. Therefore if a divides b, then a < b.

Let @ and b be positive integers. Suppose ab is odd and that a or b is
even. We may assume a is even. Then a = 2m for some integer m. Then
ab = (2m)b = 2(mb). Since mb is an integer, ab is even. Since a number
cannot be both even and odd, this is a contradiction. Therefore if ab is odd,
then a and b are both odd.
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()

(d)

Suppose a is odd and a-+1 is not even. Then a+1 is odd, so a+1 = 2k+1 for
some integer k. Thus a = 2k, so a is even. This contradicts the assumption
that a is odd. Therefore if a is odd, a + 1 is even.

Suppose a — b is odd and a + b is even. Then a —b =2k +1 and a +b = 2m
for some integers k and m. Then (a —b) + (a +b) = 2a =2k + 1+ 2m =
2(k +m) + 1 is odd, but 2a is even. This is a contradiction. Therefore if
a — b is odd, then a + b is odd.

Let a, b be positive integers. Assume that a < b and ab < 3. Suppose that

a # 1. Since a is a positive integer, @ > 2. And since a < b, b > 3. Therefore
ab > 6. This contradicts the assumption that ab < 3.

Let a, b, and ¢ be positive integers. Then

a divides b iff b = ak for some integer k
iff  bc = (ac)k for some integer k
iff  ac divides be.

Let a and b be positive integers.

Part 1. Suppose a = 2 and b = 3. Then a + 1 = 3 divides b= 3 and b = 3
divides b+ 3 = 6.

Part 2. Suppose a + 1 divides b and b divides b + 3. Then b + 3 = bk for
some integer k, so 3 = bk — b = b(k — 1). Therefore b divides 3, so b =1 or
b= 3. Since a+ 1 divides b, a+1 <b. Thus b # 1,s0 b = 3. Sincea+1 > 1
and a + 1 divides 3, a + 1 = 3. Thus a = 2.

Let a be a positive integer.

Part 1. Suppose a is odd. Then a = 2k + 1 for some integer k, so
a+1=2k+2=2(k+1). Since k + 1 is an integer, a + 1 is even.

Part 2. Suppose a + 1 is even. Then a + 1 = 2m for some integer m, so
a=2m—1=2(m— 1)+ 1. Since m — 1 is an integer, a is odd.

Let a, b, ¢, d be positive integers.

a+b=cand2b—a=d if a=b—-cand2b—a=4d
ifft a=b—cand2b—(b—c)=d
if a=b—candb+c=d.

Suppose m and n have the different parity. Then one is even and the other
is odd. We may assume, without loss of generality, that m is even and n
is odd. Then m = 2k and n = 2j + 1 for some integers k£ and j. Then
m? —n27(2k)27 (25 +1)? = 4k? — 452 — 45 — 1 = 2(2k? — 22 — 1) + 1, which
is odd.

Suppose m? — n? is odd.
If m is even, then m?
even, n? = m? — (m?
odd.

If m is odd, then m? is odd. Therefore, since m? —n? is odd and m? is odd,

n? = m? — (m? — n?) is even. From n? is even, we conclude that n is even.

is even. Therefore, since m? — n? is odd and m? is

—n?) is odd. From n? is odd, we conclude that n is

Hence, if m is even, then n is odd, and if m is odd, then n is even. Therefore,
m and n have opposite parity.
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10.

11.

12.

1.6

Let n be a natural and suppose to the contrary that -Z= < -5  Then

n+l — n42°
nn+2) < nn+1),son+2 < n+ 1, which is impossible. We conclude
that 17 > 5.

Assume /5 is a rational number. Then /5 = ’E’ where p and ¢ are positive

integers, ¢ # 0, and p and ¢ have no common factors. Then 5 = 5727 so 5q* = p>.
The prime factorization of ¢ has an even number of 5’s (twice as many as the
factorization of ¢), so 5¢ has an odd number of 5’s in its prime factorization.
But 5¢% = p? and p? has an even number of 5's in its prime factorization. This
is impossible. Therefore \/5 is irrational.

Suppose z, y, z are real numbers and 0 < z < y < z < 1. Assume that
the distances from x to y and from y to z are at least % That is, assume
le—y|l=y—z> % and |y —z|=2z—y > % The total distance from 0 to 1 is 1;
thatis (z—0)+(y—z)+(z—y)+(1—2)=1.Butz—0>0and 1 — 2> 0, so
(x—0)+(y—x)+(z—y)+ (1 —2) >0+ % +1+0=1. This is a contradiction.
Therefore at least two of x, y, z are within % unit from one another.

(a) F. This is a proof of the converse of the statement, by contraposition.
(b) A.

(¢) F. This seems to be a persuasive “proof” that the sum of two even integers
is even, but it assumes that the sum of even numbers is even, which is what
must be proved.

(d) C. Leaving out the assumption that a divides b and a divides ¢ makes
this proof confusing. If we change the first sentence to “Assume a divides
both b and ¢ and a does not divide b+ ¢” then we have a correct proof by
contradiction.

Proofs Involving Quantifiers

(a) Choose m = —3 and n = 1. Then 2m + ™n = 1.
(b) Choose m =1 and n = —1. Then 15m + 12n = 3.

(¢) Suppose m and n are integers and 2m + 4n = 7. Then 2 divides 2m and 2
divides 4n, so 2 divides their sum 2m + 4n. But 2 does not divide 7, so this
is impossible.

(d) Suppose 12m + 15n = 1 for some integers m and n. Then 3 divides the left
side but not the right side, which is impossible.

(e) Let ¢t be an integer. Suppose there exist integers m and n such that
15m + 16n = t. Let r and s be the integers 5m and 2n, respectively. Then
3r +8s = 15m + 16n =t.

(f) Suppose 12m + 15n = 1 for some integers m and n, and suppose further
that m and n are not both positive. Then 3 divides the left side but not the
right, which is impossible. Therefore, if there exist integers m and n such
that 12m + 15n = 1, then m and n are both positive.

Alternative proof. Let P be the statement “there exist integers m and n
such that 12m + 15n = 1.” By part (d), P is false. Therefore P implies m
and n are both positive.

(g) Let m be an odd integer. Suppose m = 4k + 1 for some integer k. Then
m+2=4k+3 =4(k+1) — 1 =45 — 1 where j is the integer k + 1.
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(h)

Suppose m is an odd integer. Then m = 2n + 1 for some integer n. Then
m?=02n+1)2=4n’>+4n+1=4(n>+n)+ 1. But n®> +n =n(n+1) is
even (Recall Exercise 7(d) of Section 1.4), so n? +n = 2k for some integer
k. Therefore m? = 4(2k) +1 = 8k + 1.

Suppose m and n are odd integers. Assume that neither m nor n is of the
form 45 — 1 for some integer j. Then m = 4j; + 1 and n = 4j5 + 1, for
some integers j; and ja. (Recall the result from Section 1.4 that every odd
integer has either the form 45 + 1 or the form 45 — 1, for some integer j.)
Thus mn = (451 + 1)(4j2 + 1) = 4(4j1j2 + j1 + j2) + 1. Then mn cannot be
written in the form 4k — 1, where k is an integer. Therefore, if mn is of the
form 4k — 1, then m or n is of the form 45 — 1.

Let a, b and ¢ be integers such that ¢ divides a and ¢ divides b. Let x and
y be integers. Then there exist integers m and mn such that a = ¢m and
b = en, so ax + by = (em)x + (en)y = c(mz + ny) and mz + ny is an
integer, so c¢ divides ax + by.

Alternate proof. Let a, b and ¢ be integers such that ¢ divides a and ¢
divides b. Let = and y be integers. By a previous exercise, ¢ divides integer
multiples of ¢ and b, so ¢ divides az and by. Then (using another exercise)
c divides their sum az + by.

The proof involves repeated applications of the previous exercise, which
says that a divides any sum of integer multiples of a.

Let a, b and ¢ be integers such that a divides b— 1 and a divides ¢c—1. Then
by exercise 2(a) a divides (b —1)(c — 1) = be — b — ¢+ 1. Then by Exercise
2(a), a divides (be —b—c+1) 4+ (b —1) = bc — c. Then by Exercise 2(a), a
divides (be — ¢) + (¢ — 1) = bc — 1.

Let a and b be integers such that b = ka for some integer k. Let n € N.
Then b™ = (ka)™ = k™a™, so a™ divides b,.

Let a and ¢ be integers such that a is odd, ¢ > 0, ¢ divides a and ¢ divides
a+2.
By Exercise 2(a), ¢ divides (—1)a+1(a+2), so ¢ divides 2. The only divisors
of 2 are 1 and 2. If ¢ = 2, then 2 divides a, so a is even. But a is odd, so
c=1.

and suppose there exist integers m and n such that am + bn = 1. Also
suppose that ¢ divides a and ¢ divides b. Then by part (a), ¢ divides am+bn,
so ¢ divides 1. Thus ¢ = £1. Therefore if there exist integers m and n such
that am+bn = 1, and ¢ # %1, then ¢ does not divide a or ¢ does not divide
b.

3. Assume that every even natural number greater than 2 is the sum of two primes.

4.

(a)

(b)

Let n be an odd natural number greater than 5. Then n — 3 is an even natural
number greater than 2, so by the hypothesis it is the sum of two primes. Let py
and po be primes such that n — 3 = p; + p2. Then n = p; 4+ p2 + 3. Since py, po,
and 3 are primes, n is the sum of three primes.

False.

Counterexample: Let z = 41. Then 2% + z + 41 = 412 + 41 + 41 =
41(41 + 14 1) = 41(43), which is not prime.

True.

Proof. Let x be a real number. Then y = —x is a real number such that
r+y=0.
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()
(d)

()

(b)

) Let n be a natural number. Thenn >1,s01= 2 >

False.
Counterexample: Let 2 = 2 and y = 1. Then y* = 12 = 142 = .
False.

Counterexample: Let a = 6, b = 3 and ¢ = 2. Then « divides bc, but a
doesn’t divide b or c.

True.

Proof. Suppose a, b, ¢, d, j and k are integers such that b — ¢ = ka and
c—d=ja.Thenb—d= (b—c)+(c—d) = ka+ja = (k+j)a, so a divides
b—d.

False.

Counterexample: Let x = ;:E Then 22 — 2 = —;11 < 0.

False.

Counterexample: Let x = % Then 2% = /2 ~ 1415 < 1.5 =2 + 1.
False.

Counterexample: Let © = 1. Suppose y is a positive real number less than
. Then 0 < y < 1, and for z = 2 (or any other positive real number)
yz < z.

True.

Proof. Let = be a positive real number and choose y = x. Then the
statement [y < x = (Vz)(yz > 2)] is true.

Alternative proof. Let x be a positive real number, and let y = 1. Then
if z is a positive real number, yz = z, so yz > z.

Part 1. Suppose z is prime. Then by definition x is not 1 and there is no
positive integer greater than 1 and less than or equal to v/x that divides .
Part 2. Assume that x > 1 and there is no positive integer greater than 1
and less than or equal to that divides x. Suppose z = mn for some natural
numbers m and n, and m < n. By the hypothesis m = 1 or m > /z. But
m > \/x implies that n > y/z, from which we conclude that mn > z. Since
this is impossible, m = 1 and thus n = x. Therefore x is prime.

Suppose p is prime and p # 3. Then 3 does not divide p, so when p is
divided by 3 the remainder is either 1 or 2. Thus, there is an integer k such
that p = 3k + 1 or there is an integer k such that p = 3k + 2.

If p = 3k+1, then p?+2 = (3k+1)24+2 = (9k2+6k+1)+2 = 9k2+6k+3 =
3(3k% + 2k + 1) so p? + 2 is divisible by 3.

If p=3k+2, then p? +2 = 3k +2)2 +2 = (9% + 12k +4) +2 =
9k% + 12k + 6 = 3(3k? + 4k + 2) so p? + 2 is divisible by 3.

l.

n

Choose M = 10. Let n be a natural number greater than m. Then
1< 4=01<013.

Let n be a natural number. Then both 2n and 2n + 1 are natural numbers.
Let M =2n+ 1. Then M is a natural number greater than 2n.
Let M = 2. Now if n is a natural number, then by part (a) % <l<2

Suppose there is a largest natural number K. Then K + 1 is a natural
number and K + 1 > K. This is a contradiction.

Let € be a positive real number. Then § is a smaller positive real number.
Therefore, for every positive real number there is a smaller positive real
number.
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7.

1.7

1.

(g) Let € > 0 be a real number. Then % is a positive real number and so has

a decimal expression as an integer part plus a decimal part. Let M be the
integer part of % plus 1. Then M is an integer and M > %
To prove for all natural numbers n > M that + < €, let n be a natural
number and assume that n > M. Since M > ¢, we have n > % Thus
7—11 < €. Therefore, for every real number ¢ > 0, there is a natural number
M such that for all natural numbers n > M, le <e.

(h) Let € > 0. By part (g), there is M such that < < ¢ for all n > M. Now if
m>n>M,then7—11—%<7—17j<e.

(i) Let K be 10. Suppose r > K. Then r > 10, so 72 > 100. Therefore
£ < 0.01.

(j) Let L = —15 and G = —1. Suppose L < < G. Then —1.5 < x < —1, so
15> —2x > 1. Then 30 > —22 > 2 and 40 > 10 — 2z > 12.

(k) Let M be 51. Then M is an odd integer. Suppose r is a real number and
r > M. Then r > 51, so r > 50. Then 2r > 100, so % < W%O’

(1) Let « be a natural number. Choose k = —4x + 50. Then k is an integer and
k < —3.3z + 50, so 3.3x + k < 50.

(m) Let  be 99 and y = 28. Then x4y = 127 < 128. Suppose r > z and s > y.

Then r — 50 > 49 and s — 20 > 8. Therefore (r — 50)(s — 20) > 392 > 390.

(n) Let z and y be positive real numbers such that © < y. Then y— = is positive,
and yTlx is a positive real number. Choose M to be a natural number larger
than y_% Suppose n is a natural number and n > M. Then n > y_%, SO
Y — x> % That is, % <y—x.

a) F. The false statement referred to is not a denial of the claim.

(
(b

)
) C. Uniqueness has not been shown.
¢) F. Listing numerous examples does not constitute a proof.
)
)

(

(d) A.

(e) F. The proof is correct for Case 2. However, giving examples for Cases 1
and 3 does not prove that the statement is true for all x in those cases.

(f) A. Terse, but correct.
(g) A. A proof by contraposition would be more natural.
(h) F. The “proof” shows that the converse of the claim is true.

(i) C. The number % may not be a natural number. To correct this error,
choose K to be a natural number greater than =

2e”
() A.

Additional Examples of Proofs

(a) Proof. We work both forwards and backwards: From the hypothesis that
is odd we can deduce that 3n is even, from which we can 3n + 1 deduce
that n is even. We could reach the conclusion that is 2n + 8 divisible by 4 if
we knew that 4 divides 2n (since 8 is divisible by 4). In turn, the statement
2n is divisible by 4 may be derived from the statement that n is divisible
by 2. We combine these steps in the proper order to create the proof.
Suppose n is an integer and is odd. Therefore 3n is even, 3n+1 which implies
that n is even. We are now using properties of even and odd integers that
we proved earlier, without referencing specific examples or exercises. Since
n is even, n is divisible by 2. Therefore 2n is divisible by 4. Finally since 8
is also divisible by is divisible by 4, 2n 4 8 is divisible by 4.
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(b)

Proof. Let a be a real number, a # 3. The key to the proof is to use the
a = 3 idea of “solution” and then work with the resulting equation.
Assume that a is a solution to 22 —z — 6 = 0.

Then a makes the equation true by the definition of a solution to an
equation.

Thus a? —a — 6 = (a — 3)(a +2) = 0.

Then a + 2 = 0, because a — 3 # 0.

Then (a? + 1)(a+2) = a® +2a> +a +3 #£0.

Therefore a is a solution to x> 4+ 2z 4+ +3 = 0.

Proof. Assume that a # 3. Observe that in the proof above, each step
implies its predecessor. Thus we can modify the given proof to create an iff
proof.

a is a solution to 22 —z — 6 =10

iff a2 —a—6=(a—3)(a+2)=0.

iff a+2=0. Because a — 3 # 0.
iff (a2 +1)(a+2)=a®*+2a>+a+3=0. Because a® + 1 # 0.
iff @ is a solution to =3 + 222 + z +3 = 0.

Proof. Suppose z? = 2z + 15 and z > 2. Then (z — 5)(z + 3) = 0. Since
2 > 2, x must be 5. Then z—4 and 2 — 3 are positive, so (z—4)/(x—3) > 0.

Proof. Let x and y be real numbers. The statement has the form P =
(QV R), so it might be proved by assuming P and ~ @ and deducing R. In
this case a proof by contrapositive works well.

Assume that neither  nor y is irrational. Then both z and y are rational,
so they can be written in the form x = %’ and y = L where p, ¢, r, and
s are integers, ¢ # 0, and s # 0. Therefore, z +y =2 + * = %jq. Since
ps+rq and ¢s are integers and ¢s = 0, z + ¥y is a rational number. We have
shown that if x and y are rational, then = + y is rational. We conclude that
if x + y is irrational, then either x or y is irrational.

Qs @l

Proof. If we let S be the set of all nonvertical lines in the xy-plane, we can
simplify the symbolic form of the theorem as follows: (VL, € S)(VLy € 5)
(L1 and Ly are perpendicular =

(slope of Ly) - (slope of Ly) = —1) >.

Let Ly and Ly be nonvertical lines. Suppose L1 and Lo are perpendicular.
We now use the fact that the slope of a nonvertical line is tan(«), where
a is the angle of inclination of the line. Let «; and as be the angles of
inclinations of L1 and Lo, respectively. See the figure below. We may assume
that a; > a. We can make this assumption because the two lines are
arbitrary; if a3 < ao simply interchange the labels of the lines. Since L;
and Ly are perpendicular, a; = ag + 5. Therefore,

1

tan(ay) = tan(ag + g) = — cot(az) = _tan(ag)'

We use trigonometric identities to rewrite tan(ay). Thus, tan(aq) -
tan(as) = —1. Since tan(ay) is the slope of Ly and tan(as) is the slope of
Lo, the product of the slopes is —1.
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(8)

L, L,

Gl

R
/ N

Proof. This is a “non-existence” proof. We could restate the result as
“Every point inside the circle is not on the line” and begin a direct proof
by assuming that (x,y) is a point inside the circle. We would then have to
prove that (z,y) is not on the line. In this instance, a better approach is to
use a proof by contradiction. The statement has the form ~ (3z)(3y)((z, y)
is inside the circle A(x,y) is on the line).

Suppose there is a point (a, b) that is inside the circle and on the line. Then
(a—3)?2+b% < 6and b = a+ 1. We now have two expressions to use.
Therefore,

(a—3)2%+(a+1)? <

20> —4a+10 <

a?—2a+5 <
a?—2a+1 < -1
(a—1)?2 < -1

This is a contradiction since (a — 1)2 = 0. Thus, no point inside the circle
is on the line.

Proof. Proofs that verify equalities or inequalities containing absolute value

expressions usually involve cases, because of the two-part definition of |z|.

The two cases are £ — 2 > 0 and = — 2 < 0. The proof in each case

is discovered by working backwards from the desired conclusion. The key

steps are to note that, in the first case, if x > 2, then —6 < x, and, in the
6

second case, that if x > 1, then 7 ST >,

Let = be a real number greater than 1.
Case 1. Suppose © — 2 > 0. Then |z — 2| =z — 2. Since = > 2,

-6 < =x
3r—6 < 4z
3(xr—2
M < 4. Remember that x is positive.
T
-2
Therefore, M 4.

Case 2. Suppose  — 2 < 0. Then |z — 2| = —(x — 2). By hypothesis, x > 1.
Therefore,

6
- < x
6 < Tx
6—3r < dx
3[—(x—2)] < 4z
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2.

(a)

3—(x —2
[—(x )l < 4 Remember that x is positive.
x
Therefore, 3z 2| =4
x

Let n be an integer. Then n is either even or odd. If n is even then n = 2k
for some integer k, so that 5n2 + 3n +4 = 5(2k)2 + 3(2k) + 4, which is twice
the integer 10k +3n + 2. If n is odd then n = 2k + 1 for some integer k, so
that 5n% + 3n +4 = 5(2k + 1)2 + 3(2k + 1) + 4, which is twice the integer
10k2 + 13n + 6. In either case, 5n? + 3n + 4 is even.

Let n be an odd integer. Then n = 2k + 1 for some integer k, so
2n% +3n +4 = 2(2k + 1)® + 3(2k + 1) + 4 = 2(4k* + 7k + 4) + 1. Since
4k% + 7k + 4 is an integer, 2n2 + 3n + 4 is odd.

Let x be the smallest of five consecutive integers. Then the sum is « + (z +
D4+ (z+2)+(x+3)+(x+4) =5z + 10 = 5(x + 2). Since = + 2 is an
integer, the sum is divisible by 5.

Let Ly and Ly be two nonvertical lines such that the product of their slopes
is —1. Let a; and ay be the inclination angles of L; and Lo respectively.
Since neither line is vertical, the slope of L; is tan(ay) and the slope of Lo
is tan(aw).

Since tan(aq ) tan(as) = —1, exactly one of these two must be positive and
neither can be 0. Suppose without loss of generality that tan(cas) > 0. Then
0 <ay < %. Now tan(a;) = m = —cot(az) = tan(ag 4 5), and since
both a; and as + 5 are between 5 and 7, we must have that oy = az + 5.
Therefore L; and Lo are perpendicular.

Let n be an integer. Then n® —n = n(n? — 1) = n(n + 1)(n — 1) is the
product of three consecutive integers. By previous results, if n is even, then
n+1is odd and if n is odd, then n+1 is even. Therefore, either n or n+1 is
divisible by 2. By the Division Algorithm, the remainder when n is divided
by 3 will be 0, 1, or 2.

Case 1. If the remainder is 0, then n is divisible by 3.

Case 2. If the remainder is 1, n = 3k+1 for some integer k. Then n—1 = 3k
is divisible by 3.

Case 3. If the remainder is 2, n = 3k + 2 for some integer k. Then
n+1=3k+2+1=3k+ 3 is divisible by 3.

In all cases, one of n, n — 1, n + 1 has a factor of 3, and either n or n 4+ 1
has a factor of 2. Therefore, n® —n has a factor of 2-3 and is divisible by 6.
Let n be an integer. Then (n —n)(n +2) = n(n+1)(n — 1)(n + 2) is the
product of four consecutive integers. From part (e) n® — n is divisible by 6
and hence divisible by 3.

By previous results, if n is even, then n + 1 is odd and if n is odd, then
n + 1 is even. Therefore, either n or n + 1 is divisible by 2. If n is divisible
by 2, then so is n+ 2. If n+ 1 is divisible by 2, thensoisn+1—-2=n—1.
Thus either both n and n+ 2 are each divisible by 2 or both n—1 and n+1
are each divisible by 2.

In all cases, n® — n has a factor of 3, and two terms (either n and n + 2, or
n—1 and n+ 1) each have a factor of 2. Therefore, (n® —n)(n +2) has two
factors of 2 and one factor of 3 and therefore is divisible by 2-2-3 =12.

Suppose the line 2z + ky = 3k has slope % In slope-intercept form the line
has equation y = —%x + 3, so —% = % Thus k = —6. Therefore if k # —6,
then L does not have slope %
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6.

(b)

()
(a)

(a)

Suppose for some real number k that L is parallel to the x-axis. Then L
has slope 0, so _72 = (. This is impossible. Therefore L is not parallel to
the z-axis.

L passes through (1,4) iff 2(1) 4+ k(4) = 3k, and this happens iff k = —2.

Suppose x is rational. Suppose that x + y is also rational. Then there exist

integers p and ¢,q # 0 such that x = g and integers r and s, s # 0, such

that x +y =2 Theny = (x +y) —2z =% — g = qu PS¢ Since rq — ps and
sq are 1ntegers and sq # 0, y is rational. Therefore 1f x is rational and y is
irrational, then = 4 y is irrational.

Let x = 7w and y = —7. Then x and y are irrational, and = + y is irrational.

) Let z be a rational number. By part (a), z + 7 is irrational. Let x = z + 7

and y = —7. Then x +y = 2.

Let z be a rational number and x be an irrational number. Then —z is
irrational. Let y = z —x. Thenx +y =z + (2 —z) = z and z — z is
irrational by part (a), so there exists an irrational number y such that
T4y =z

Suppose there is an irrational number w such that x + w = z. Then
w = z —x = y. Therefore the irrational number y such that z +y = 2
is unique.

Assume (z,y) is on the given circle and y # 0. Then 2% + y*> = r?, so
—y?* =ax® —r? = (z+7)(z —r) and so = = —”—;”".

Thus the slope of the line passing through (x,y) and (r,0) is the negative
reciprocal of the slope of the line that passes through (z,y) and (—r,0).
Therefore the lines are perpendicular.

Note that if y = 0, then x = +7, so the points for which this argument does
not apply are (r,0) and (—r,0). If (z,y) = (r,0), then there are many lines
passing through (x,y) and (r,0), only one of which is perpendicular to the
line through (x,y) and (—r,0).

First observe that if y = 0, then the points (z,y), (r,0), and (—r,0) are all
on the z-axis, so the line through (z,y) and (r,0) is not perpendicular to
the line through (z,y) and (—r,0).

Suppose y # 0 and the two lines are perpendicular. Then the slopes of the

lines are negative reciprocals, so —%- = —ITJ”. Thus —y? = (z+7r)(z—7) =
22 — 72 and so 22 + y? = r2. But the fact that (z,y) lies inside the circle

requires that z2 + y? < r2, so this is a contradiction.

Then yo = 6 — xo. The distance between (zg,yo) and (—3,1) is

D = VB wrd-wp
— (=30 +[1— (6—0)]?
= \/(—3 —20)% + (xo — 5)2

\/ 223 — Azo + 34

_ \/2(33(2) — 229 + 1) + 32

\/[2 (w0 — 1)° +16] + 16

> V16 since [2 (z0 —1)° + 16] >0




1 LOGIC AND PROOFS 34

Since the distance from (—3,1) to (zo,y0) is greater than 4, the point
(z0,10) is outside the circle.

269 is such a number.

By the Extreme Value Theorem, if f does not have a maximum value on
[5,7], then f is not continuous. And if f is not continuous on [5, 7], then f
is not differentiable on [5, 7].

Suppose to the contrary that there are real numbers a < b that satisfy
this equation. Since f(x) = 2% + 6x — 1 is continuous and differentiable
everywhere, it is certainly continuous on [a, ] and differentiable on (a,b).
Thus Rolle’s Theorem asserts the existence of a number ¢ € (a, b) such that
f'(¢) = 3¢ + 6 = 0, which is impossible since 3¢? > 0.

(This proof is motivated by working backward from two desired inequalities
— one for each possible value of |2z — 1].)

Let « be a nonnegative real number.

Case 1: ¢ > % In this case 2z —1 > 0, so |2z — 1| = 2z —1. Since —1 < 2, we
have 2z —1 < 2x +2 = 2(z + 1). Since x + 1 is positive, we have 2;;11 <2.
Thus % <2.

Case 2: 0 <z < % In this case 2z — 1 < 0, so |2z — 1] = 1 — 2z. Since
x>0, =1 <4z. Thus 1 — 2z < 24 2z = 2(1 + ). Since 1 + « is positive,

1—2x [22—1]
we have T < 2. Therefore 7 < 2.

If 2<z<1,then (x—-1) <0, (z+2)>0, (x—3)<0and (x+4) >0,

(z—1)(x+2)
@)ty > -

SO

(@-D@+2) o

Now if x > 3, then all of the factors are positive, so CERICE)

Suppose (z,y) is inside the first circle. The from the distance formula,
|# — 3|% + |y — 2|2 < 4. Therefore |z — 3|? < 4 and |y — 2|? < 4. It follows
that |t —3| <2 and |y —2| <2,80 -2 <z —3 < 2and thus 1 <z <5 and
0 < y < 4. Therefore 2 < 25 and y? < 16, so 2% + 4% < 41. Thus (z,y) is
inside the second circle.

Suppose (z,y) is inside the circle. Then as in part (a), |z — 3] < 2 and
ly — 2] < 2, so in particular, x — 3 < 2 and —2 < y — 2. Therefore
r—6<-1<0<y<3y.

(y—2)*> =
(y+1)* =

The statement is false. The point (2, 3) is inside the circle (z—3)?2
4, since (2—3)2+(3—2)% = 2 < 4. But (2, 3) is not inside (z—5)?
25, since (2 — 5)% 4 (3 +1)? = 25425,

+
_|_

310 = 8(38) 4 6. The quotient is 38 and remainder is 6.
36 = 5(7) 4+ 1. The quotient is 7 and remainder is 1.
36 = —5(—7) + 1. The quotient is -7 and remainder is 1.
—36 = 5(—8) 4 4. The quotient is -8 and remainder is 4.
44 = 7(6) + 2. The quotient is 6 and remainder is 2.
—52 = —8(7) + 4. The quotient is 7 and remainder is 4.

Suppose a and b are integers, a > b, and b > 0. Then b = a(0) + b, so when
b is divided by a, the quotient is 0.
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11.

12.

13.

14.

(b) Suppose a and b are integers, a > b, and the quotient is 0 when b is divided
by a. Then b = a(0) + r, where the remainder r is > 0. Then r = b, so
b>0.

(a
(b
(
(d

1,-1,-2 ged(8, 310) —9

1,-1 5cd( 5,36) =

18,9,6,3,2,1, —1, -2, ~3, —6, —9, —18gcd(18, —54) = 18
4,2,1,-1,-2,-4 ged(—8,—52) =4

C

) 2
)
)
)
(a) 2= ( )12 4 (—1)22 and 2 = (—9)12 + 5(22)
(b) —4 = (7)12 + (—4)22 and —4 = (—4)12 + 2(22)

)

)

)

)

)

¢) The set of all linear combinations of 12 and 22 is the set of even integers.

(
(a) ged(13,15) =1. 1= (7)13+ (—6)15
(b) ged(26,32) = 2. 2= (5)26 + (—4)32

(¢) ged(9,30) =3. 3= (7)9 + (~2)30

(a) Let a, b, and ¢ be natural numbers and gcd(a, b) = d. Suppose c divides a
and ¢ divides b. By Theorem 1.7.3, d is a linear combination of a and b. By
Therorem 1.7.1, ¢ divides every linear combination of a and b. Therefore ¢
divides d.

(b) Let a and b be natural numbers and ged(a, b) = d.

i. Suppose a divides b. Then is a common divisor of a and b. No number
larger than a divides a, so a is the largest common divisor. Thus a = d.

ii. Suppose a = d. Then a is a common divisor of a and b, so a divides b.

(¢) Let a, b, and ¢ be natural numbers and ged(a, b) = d. Suppose a divides be
and d = 1. By Theorem 1.7.3, d is the smallest positive linear combination
of a and b. Therefore there exist integers s and ¢ such that as + bt = 1.
Then acs + bet = ¢. Since a divides acs and a divides bct, a divides their
sum. Thus a divides c.

(d) Let a, b, and ¢ be natural numbers and ged(a, b) = d. Suppose ¢ divides a
and b. Since ged(a, b) = d, ¢ divides d (by part (a)) and there are integers
s and t such that as + bt = d. Then

(S) s+ (S) vt =

b
—s+ t—
C

Therefore

Q.

Since % is a linear combination of £ and 2 2, by Theorem 1.7.1 ged(2, Zz’)

d b
- Zng <Ea_> .
C c C

By Theorem 1.7.3 there exist integers p and ¢ such that

divides ¢ <. Hence

b a b
—p+ q—gcd(— ;)

ap+bq:c~gcd<g,g>.
c'c

Therefore
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Since

Thus % divides

Hence

We conclude that

(e) Let a and b be natural numbers and ged(a,b) = d. Let n be a natural
number. Since ged(a, b) = d, there are integers s and ¢ such that as+bt = d.
Then n(as + bt) = nd. Therefore (an)s + (bn)t = dn. Since dn is a linear
combination of an and bn, by Theorem 1.7.1 dn > ged(an, bn).

By Theorem 1.7.3 there exist integers p and ¢ such that (an)p + (bn)g =
ged(an, bn). Therefore ap 4+ bg = %gcd(an, bn). Since %gcd(an, bn) is a
linear combination of a and b, d divides T—llgcd(cm,bn). Thus, dn divides
ged(an, bn), which implies dn < ged(an, bn).

We conclude that dn = ged(an, bn).

15. 3, 6, and 10 are relatively prime to 7.
10 is relatively prime to 21.

None is relatively prime to 30.

16. (a) Suppose p is prime and a is any natural number. The only divisors of p are
1 and p, and ged(p, a) divides p, so ged(p,a) =1 or p.

i. Assume gcd(p,a) = p. Then p divides a by definition of ged.

ii. Suppose p divides a. Then p is a common divisor of p and a. Since p is
the largest divisor of p it is the largest common divisor of p and a, so
ged(p, a) = p.

(b) Suppose p is prime and a is a natual number.

i. Suppose ged(p,a) = 1. Then p does not divide a, because otherwise p

would be a divisor of both p and a that is larger than 1.

ii. Suppose p does not divide a. Then the only common divisor of p and
ais 1, so ged(p,a) = 1.

17. Suppose ¢ is a natural number greater than 1 with the property that ¢ divides
a or q divides b whenever ¢ divides ab. Assume ¢ is composite. Then ¢ has a
divisor m that is not 1 and not ¢. That is, ¢ = mn for some integer n, where
1 < n < ¢q. Then ¢ divides mn, so by the given property, g divides m or q divides
n. But m and n are less than ¢, so this is impossible. Therefore ¢ is prime.

18. Suppose a and b are relatively prime nonzero integers and c¢ is an integer. Then
ged(a,b) = 1, so 1 is a linear combination of a and b. That is, 1 = as + bt for
some integers s and t. Then acs + bet = ¢. Thus z = cs, y = ct is an integer
solution for the equation ax + by = c.
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19.

20.

21.

22.

Let a and b be nonzero integers and d = ged(a, b). Let m = b/d and n = a/d.
Suppose x = s and y = t is a solution for ax + by = c¢. Then as + bt = c.
Now let k be an integer. Then a(s + km) + b(t — kn) = as + bt + akm — bin =
¢+ ak(b/d) — bk(a/d) = c. Therefore, for every integer k, x = s + km and
y =t — kn is a solution for ax + by = c.

(a) lem(6,14) = 42. (b) lem(10,35) = 70.
(¢) lem(21,39) = 273. (d) lem(12,48) = 48.

(a) Part 1. Suppose a divides b. Then b is a common multiple of ¢ and b, so
condition (i) is satisfied. Now suppose n is a common multiple. Then b
divides n, so n < b. Therefore condition (ii) is satisfied, so lem(a, b) = b.
Part 2. Suppose m = b. Then b(= m) is a multiple of both a and b, so a
divides b.

(b) Part 1. Suppose m = b. Then b is a common multiple of ¢ and b, so a
divides b.

Part 2. Suppose a divides b. Then b is a common multiple of a and b; and
b is the smallest multiple of b, so LCM(a, b) = b.

(c) Suppose d = 1. Since m is a multiple of b,m = bk for some integer k. By

part (b) m = bk < ab, so k < a. Since m is a multiple of a, a divides bk. By
part (c) of Exercise 14, a divides k. Thus a < k. Then a = k, so m = ab.

(d) Suppose ¢ divides a and b. Then, since a divides m, ¢ divides m as well, so
2 b and 2 are all natural numbers. Now, since (£)c divides (2Z)c and (2)c
divides (“2)c, we have by Exercise 7(m) in Section 1.4 that ¢ divides * and
%’ divides “*. That is, 7+ is a common multiple of % and ZE’ To see that =
is the least common multiple, let n be another common multiple of ¢ and
IZ’. Then nc is a common multiple of a and b. Thus nc divides m. Therefore

by Exercise 7(m), we see that n divides 7. Therefore lem(%, g) =2,

(e) Let n be a natural number. n divides both an and bn, so by (d),
lem(a, b) =lem(%2, %”) = Llem(an, bn). Thus lem(an, bn) = n-lem(a, b).

(f) By definition, d divides a and d divides b, so by part (d) lem =
Llem(a, b). By Exercise 14(d), ged(4, %) = 1. By part (c) lem(§, g) = %%.
Therefore m = d-lem(§, %) =d(§- g) = %b, so d-m = ab.

(a) F. The claim is false: 125, 521, 215, and other numbers all work.

(b) A.

(c) F. You cannot prove a statement with an example. Here the “proof” only
examines the case where © = 7.

(d) A.

(e) C. The second to the last sentence should read, “Then ¢ divides 1.” The
correct sentence should be justified by previous exercises.

(f) A.



