Chapter 1 Form A: Test

- 1. Use interval notation to list the values of x that satisfy the inequality $x^2 3x + 2 \le 0$.
- 2. Find all values of x that solve the equation |6x 3| = 9.
- 3. Solve the inequality $|x-3| \ge 2$ and write the solution using interval notation.
- 4. Consider the points $P_1(2,4)$ and $P_2(-1,3)$
 - (a) Find the distance between P_1 and P_2 .
 - (b) Find the midpoint of the line segment joining P_1 and P_2 .
- 5. Indicate on the xy-plane the points (x, y) for which the statement

$$|x-1| < 3$$
 and $|y+1| < 2$

holds.

6. Find the equation of the circle shown in the figure.

- 7. Consider the circle with equation $x^2 + 2x + y^2 4y = -4$.
 - (a) Find the center of the circle.
 - (b) Find the radius of the circle.
- 8. Specify any axis or origin symmetry of the graph.

- 9. Consider the equation $y = x^3 + 8$.
 - (a) Determine any axis intercepts of the equation.
 - (b) Describe any axis or origin symmetry of the equation.
- 10. Find the distance between the points of intersection of the graphs $y = x^2 + 2$ and y = 6.

- 11. Suppose $f(x) = 4x^2 + 1$. Find the following values.
 - (a) f(2)

- (b) $f(\sqrt{3})$

- (c) $f(2+\sqrt{3})$ (e) f(2x) (g) f(x+h) (d) $f(2)+f(\sqrt{3})$ (f) f(1-x) (h) f(x+h)-f(x)
- 12. The graph of the function f is given in the figure.

- (a) Determine the value of f(-2).
- (d) Determine the value of f(3).
- (b) Determine the value of f(0).
- (e) Determine the domain of the function f.
- (c) Determine the value of f(2).
- (f) Determine the range of the function f.

13. Consider the following graph.

- (a) Use the graph to determine the domain of the function.
- (b) Use the graph to determine the range of the function.
- 14. Find the domain of each function.

(a)
$$f(x) = 3x + 1$$

(c)
$$f(x) = \sqrt{3x+1}$$

(b)
$$f(x) = \frac{1}{3x+1}$$

(d)
$$f(x) = \frac{1}{\sqrt{3x+1}}$$

- 15. Suppose that f(x) = 2x 4.
 - (a) Find f(x+h).

- (b) Find f(x+h) f(x).
- (c) Find $\frac{f(x+h)-f(x)}{h}$ when $h \neq 0$.
- (d) Find the value that $\frac{f(x+h)-f(x)}{h}$ approaches as $h \to 0$.
- 16. Express the area A of an equilateral triangle as a function of x if the side length is 3x.
- 17. Find the equation of the line that passes through the point (2,3) and has slope -2.
- 18. Find the slope-intercept form of the equation of the line that passes (0,0) through and is parallel to y = 2x + 1.
- 19. Find the slope-intercept equation of the line that has x-intercept -2 and y-intercept -3.
- 20. A new computer workstation costs \$10,000. Its useful lifetime is 4 years, at which time it will be worth an estimated \$2000. The company calculates its depreciation using the linear decline method that is an option in the tax laws. Find the linear equation that expresses the value V of the equipment as a function of time t, for $0 \le t \le 4$.
- 21. Consider the parabola with equation $y = x^2 4x + 3$.
 - (a) Determine the vertex of the parabola.
 - (b) Sketch the graph of the parabola.
- 22. Suppose that $f(x) = -x^2 + 6x 8$.
 - (a) Express the quadratic in standard form.
- (c) Find the maximum value of the function.

(b) Find any axis intercepts.

- (d) Find the minimum value of the function.
- 23. Find the domain of the function described by $f(x) = \sqrt{x^2 3}$.
- 24. A rectangle is inscribed beneath the parabola with equation $y = 4 x^2$. Express the area of the rectangle as a function of x.

- 25. Consider the parabola with equation $y = (x-3)^2$.
 - (a) Determine the vertex of the parabola.
 - (b) Sketch the graph of the parabola.

Chapter 1 Form A: Answers

- 1. [1, 2]
- 2. x = -1, x = 2
- 3. $(-\infty,1] \cup [5,\infty)$
- 4. $d = \sqrt{10}$, midpoint $= \left(\frac{1}{2}, \frac{7}{2}\right)$
- 5.

- 6. $(x+2)^2 + (y-3)^2 = 16$
- 7. center: (-1,2); radius: 1
- 8. origin
- 9. (a) (-1,0) and (0,1)
 - (b) none
- 10. 4
- 11. (a) 17

(d) 30

(g) $4x^2 + 8xh + 4h^2 + 1$

(h) $8xh + 4h^2$

(b) 13

(e) $16x^2 + 1$

(f) $5 - 8x + 4x^2$

12. (a) -2.5

(c) $29 + 16\sqrt{3}$

- (c) 2

(b) -0.5

(d) 0

(e) [-3.5, 3](f) $[-4,0) \cup (0,2.25]$

- 13. domain: $(-\infty, \infty)$; range: $(1, \infty) \cup \{-1\}$
- 14. (a) $(-\infty, \infty)$

- (c) $\left[-\frac{1}{3}, \infty\right)$
- (b) $\left(-\infty, -\frac{1}{3}\right) \cup \left(-\frac{1}{3}, \infty\right)$
- (d) $\left(-\frac{1}{3},\infty\right)$
- 15. (a) 2x + 2h 4 (b) 2h
- (c) 2
- (d) 2

- 16. $A = \frac{9\sqrt{3}}{4}x$
- 17. y = -x + 5
- 18. y = 2x
- 19. $y = -\frac{3}{2}x 3$