
Lecture Notes for Chapter 2:
Getting Started

Chapter 2 overview

Goals

Start using frameworks for describing and analyzing algorithms.

Examine two algorithms for sorting: insertion sort and merge sort.

See how to describe algorithms in pseudocode.

Begin using asymptotic notation to express running-time analysis.

Learn the technique of “divide and conquer” in the context of merge sort.

Insertion sort

The sorting problem

Input: A sequence of numbers .

Output: A permutation (reordering) of the input sequence such
that .

The sequences are typically stored in arrays.

We also refer to the numbers as keys. Along with each key may be additional
information, known as satellite data.

We will see several ways to solve the sorting problem. Each way will be expressed
as an algorithm: a well-defined computational procedure that takes some value, or
set of values, as input and produces some value, or set of values, as output.

Expressing algorithms

We express algorithms in whatever way is the clearest and most concise.

English is sometimes the best way.

When issues of control need to be made perfectly clear, we often use pseudocode.



2-2 Lecture Notes for Chapter 2: Getting Started

Pseudocode is similar to C, C++, Pascal, and Java. If you know any of these
languages, you should be able to understand pseudocode.

Pseudocode is designed for expressing algorithms to humans. Software en-
gineering issues of data abstraction, modularity, and error handling are often
ignored.

We sometimes embed English statements into pseudocode. Therefore, unlike
for “real” programming languages, we cannot create a compiler that translates
pseudocode to machine code.

Insertion sort

A good algorithm for sorting a small number of elements.

It works the way you might sort a hand of playing cards:

Start with an empty left hand and the cards face down on the table.

Then remove one card at a time from the table, and insert it into the correct
position in the left hand.

To find the correct position for a card, compare it with each of the cards already
in the hand, from right to left.

At all times, the cards held in the left hand are sorted, and these cards were
originally the top cards of the pile on the table.

Pseudocode

We use a procedure INSERTION-SORT.

Takes as parameters an array and the length of the array.

As in Pascal, we use “ ” to denote a range within an array.

length
length

The array is sorted in place: the numbers are rearranged within the array,
with at most a constant number outside the array at any time.



Lecture Notes for Chapter 2: Getting Started 2-3

INSERTION-SORT cost times

for to
key
// Insert into the sorted sequence . 0

while and key

key

Example

1 2 3 4 5 6

5 2 4 6 1 3
1 2 3 4 5 6

2 5 4 6 1 3
1 2 3 4 5 6

2 4 5 6 1 3

1 2 3 4 5 6

2 4 5 6 1 3
1 2 3 4 5 6

2 4 5 61 3
1 2 3 4 5 6

2 4 5 61 3

j j j

j j

Correctness

We often use a loop invariant to help us understand why an algorithm gives the
correct answer. Here’s the loop invariant for INSERTION-SORT:

Loop invariant: At the start of each iteration of the “outer” for loop—the
loop indexed by —the subarray consists of the elements orig-
inally in but in sorted order.

To use a loop invariant to prove correctness, we must show three things about it:

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before the
next iteration.

Termination: When the loop terminates, the invariant—usually along with the
reason that the loop terminated—gives us a useful property that helps show that
the algorithm is correct.



2-4 Lecture Notes for Chapter 2: Getting Started

Using loop invariants is like mathematical induction:

To prove that a property holds, you prove a base case and an inductive step.

Showing that the invariant holds before the first iteration is like the base case.

Showing that the invariant holds from iteration to iteration is like the inductive
step.

The termination part differs from the usual use of mathematical induction, in
which the inductive step is used infinitely. We stop the “induction” when the
loop terminates.

We can show the three parts in any order.

For insertion sort

Initialization: Just before the first iteration, . The subarray
is the single element , which is the element originally in , and it is
trivially sorted.

Maintenance: To be precise, we would need to state and prove a loop invariant
for the “inner” while loop. Rather than getting bogged down in another loop
invariant, we instead note that the body of the inner while loop works by moving

, , , and so on, by one position to the right until the
proper position for key (which has the value that started out in ) is found.
At that point, the value of key is placed into this position.

Termination: The outer for loop ends when , which occurs when .
Therefore, . Plugging in for in the loop invariant, the
subarray consists of the elements originally in but in sorted
order. In other words, the entire array is sorted.

Pseudocode conventions

Indentation indicates block structure. Saves space and writing time.

Looping constructs are like in C, C++, Pascal, and Java. We assume that the
loop variable in a for loop is still defined when the loop exits (unlike in Pascal).

// indicates that the remainder of the line is a comment.

Variables are local, unless otherwise specified.

We often use objects, which have attributes. For an attribute attr of object , we
write attr. (This notation matches attr in Java and is equivalent to ->attr
in C++.) Attributes can cascade, so that if y is an object and this object has
attribute attr, then y attr indicates this object’s attribute. That is, y attr is
implicitly parenthesized as y attr.

Objects are treated as references, like in Java. If and denote objects, then
the assignment makes and reference the same object. It does not
cause attributes of one object to be copied to another.

Parameters are passed by value, as in Java and C (and the default mechanism in
Pascal and C++). When an object is passed by value, it is actually a reference
(or pointer) that is passed; changes to the reference itself are not seen by the
caller, but changes to the object’s attributes are.



Lecture Notes for Chapter 2: Getting Started 2-5

The boolean operators “and” and “or” are short-circuiting: if after evaluating
the left-hand operand, we know the result of the expression, then we don’t
evaluate the right-hand operand. (If is FALSE in “ and ” then we don’t
evaluate . If is TRUE in “ or ” then we don’t evaluate .)

Analyzing algorithms

Wewant to predict the resources that the algorithm requires. Usually, running time.

In order to predict resource requirements, we need a computational model.

Random-access machine (RAM) model

Instructions are executed one after another. No concurrent operations.

It’s too tedious to define each of the instructions and their associated time costs.

Instead, we recognize that we’ll use instructions commonly found in real com-
puters:

Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling). Also,
shift left/shift right (good for multiplying/dividing by ).
Data movement: load, store, copy.
Control: conditional/unconditional branch, subroutine call and return.

Each of these instructions takes a constant amount of time.

The RAM model uses integer and floating-point types.

We don’t worry about precision, although it is crucial in certain numerical ap-
plications.

There is a limit on the word size: when working with inputs of size , assume
that integers are represented by lg bits for some constant . (lg is a
very frequently used shorthand for log .)

we can hold the value of we can index the individual elements.
is a constant the word size cannot grow arbitrarily.

How do we analyze an algorithm’s running time?

The time taken by an algorithm depends on the input.

Sorting 1000 numbers takes longer than sorting 3 numbers.

A given sorting algorithm may even take differing amounts of time on two
inputs of the same size.

For example, we’ll see that insertion sort takes less time to sort elements when
they are already sorted than when they are in reverse sorted order.


