Solutions for Selected Problems in Geometry: Theorems and Constructions

By A. Berele and J. Goldman

Given $\overline{AB} \cong \overline{DE}, \overline{BC} \cong \overline{EF}$, and $\overline{AC} \cong \overline{DF}$ in $\triangle ABC$ and $\triangle DEF$ respectively. We want to show that the two triangles are \cong . Construct G on the opposite side of \overline{BC} from A so that $\angle GBC \cong \angle E$ and $\angle GCB \cong \angle F$. Work with the case where \overline{AG} intersects \overline{BC} in the point H, which is between B and C, as in the picture above. (The cases where H = B, H = C, H to the left of B, and H to the right of C are similar and must be done separately. We just do the one.) By ASA, we have $\triangle BGC \cong \triangle EDF$. From corresponding parts, $\overline{GC} \cong \overline{DF}$, and by transitivity, $\overline{AC} \cong \overline{GC}$. So, $\angle CAH \cong \angle CGH$. In like manner, obtain $\angle BAH \cong \angle BGH$. Add the angle measures to conclude $\angle BAC \cong \angle BGC$. Consequently, $\triangle BAC \cong \triangle BGC$, from SAS. Since \cong is a transitive relation on \triangle , $\triangle BAC \cong \triangle EDF$ and we are finished.

Assume the data of the problem. Because $\overline{AB}\cong \overline{DE}$, the triangles may be oriented as in the picture, A and D coincide, B and E coincide. $\angle ABC+\angle DEF=180^\circ$, so \overline{CBF} is a line. From $\triangle ACF$ isosceles, obtain $\angle ACF\cong \angle AFC$. Claim: $\overline{CB}\cong \overline{BF}$; for, if not, one of CB or BF is smaller. Suppose CB < BF. Then there is a point G in the interior of \overline{BF} such that $\overline{CB}\cong \overline{BG}$. But from SAS, $\triangle ABC\cong \triangle ABG$. $\therefore \angle AGC\cong \angle ACF\cong \angle AFC$. However, the exterior angle theorem implies $\angle AGC> \angle AFC$. Contradiction. Consequently $\overline{CB}\cong \overline{BF}$. $\therefore \triangle ABC\cong \triangle DEF$ by ASA.

p. 17, #1.4

Assume the data of the problem. Suppose $\overline{AB} \ncong \overline{DE}$. One of the last two segments is longer than the other, say AB > DE. Construct G on \overline{BA} so that $\overline{BG} \cong \overline{ED}$. From SAS, $\triangle GBC \cong \triangle DEF$. $\therefore \angle BGC \cong \angle D \cong \angle A$. However, from the exterior angle theorem, $\angle BGC > \angle A$. Contradiction: Thus we must have $\overline{AB} \cong \overline{DE}$ and therefore $\triangle ABC \cong \triangle DEF$ by ASA.

p. 17, #1.5

Consider the alternative diagram below. Note that E is not in the interior of $\triangle ABC$, that F is on \overline{AB} extended, and that G is interior to \overline{AC} . As in the text, obtain $\overline{AF} \cong \overline{AG}$ and $\overline{BF} \cong \overline{GC}$; however, we must use subtraction to get \overline{AB} and addition to get \overline{AC} . Thus, the "proof" will not work here. In fact, this is the situation in any scalene \triangle .

p. 17, #1.6

Set the points of your compass open to any convenient distance d and use it to determine points A and B on ℓ (by taking P as the center of a circle) such that AP = PB = d. Now, with compass points set on any convenient length apart > d, draw intersecting arcs of two circles, each with this length as radius and with centers A and B.

If Q is one of the intersection points of the two arcs, then one can show $\overrightarrow{PQ} \perp \ell$. The proof follows from the fact that $\triangle APQ \cong \triangle BPQ$ since we may use SSS. Further note that $\angle APQ = \angle BPQ$ and $\angle APQ + \angle BPQ = 180^{\circ}$ imply that \overrightarrow{PQ} meets ℓ at a 90° angle. Further congruence considerations yield the fact that the other intersection point, R, of the arcs lies on \overrightarrow{PQ} .