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Preliminary Solutions to Problems and Question 

Chapter 2 
 

Note: Printing errors and corrections are indicated in dark red. Currently none reported.  

2.1   Symmetric dielectric slab waveguide Consider two rays such as 1 and 2 interfering at point P 
in Figure 2.4  Both are moving with the same incidence angle but have different m wavectors just 
before point P.  In addition, there is a phase difference between the two due to the different paths taken 
to reach point P. We can represent the two waves as E1(y,z,t) = Eocos(tmymz + ) and E2(y,z,t) = 
Eocos(tmymz) where the my terms have opposite signs indicating that the waves are traveling in 
opposite directions.  has been used to indicate that the waves have a phase difference and travel 
different optical paths to reach point P. We also know that m =k1cosm and m = k1sinm, and obviously 
have the waveguide condition already incorporated into them through m. Show that the superposition of 
E1 and E2 at P is given by 
   )cos()cos(2),,( 2

1
2
1   ztyEtzyE mmo  

What do the two cosine terms represent?  

 The planar waveguide is symmetric, which means that the intensity, E2, must be either maximum 
(even m) or minimum (odd m) at the center of the guide. Choose suitable  values and plot the relative 
magnitude of the electric field across the guide for m = 0, 1 and 2 for the following symmetric dielectric 
planar guide : n1 = 1.4550, n2 = 1.4400, a = 10 m, = 1.5 m (free space), the first three modes have 
1 = 88.84, 2 = 87.673 = 86.51. Scale the field values so that the maximum field is unity for m = 0 
at the center of the guide. (Note: Alternatively, you can choose  so that intensity (E2) is the same at the 
boundaries at y = a and y = a; it would give the same distribution.) 

Solution  

)cos()cos()( zztEzztEyE mmommo      

Use the appropriate trigonometric identity (see Appendix D) for cosA + cosB to express it as a product 
of cosines 2cos[(A+B)/2]cos[(AB)/2], 

  )cos()cos(2),,( 2
1

2
1   ztyEtzyE mmo  

The first cosine term represents the field distribution along y and the second term is the propagation of 
the field long the waveguide in the z-direction. Thus, the amplitude is 

  Amplitude = )cos(2 2
1  yE mo  

The intensity is maximum or minimum at the center. We can choose  = 0 ( m = 0),  =   ( m = 1),  = 
2 ( m = 2), which would result in maximum or minimum intensity at the center. (In  fact,  = m). The 
field distributions are shown in Figure 2Q1-1. 
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Figure 2Q1-1 Amplitude of the electric field across the planar dielectric waveguide. Red, m = 0; blue, m = 1; 
black, m = 2.  

 

2.2  Standing waves inside the core of a symmetric slab waveguide  Consider a symmetric planar 
dielectric waveguide. Allowed upward and downward traveling waves inside the core of the planar 
waveguide set-up a standing wave along y. The standing wave can only exist if the wave can be 
replicated after it has traveled along the y-direction over one round trip. Put differently, a wave starting 
at A in Figure 2.51 and traveling towards the upper face will travel along y, be reflected at B, travel 
down, become reflected again at A, and then it would be traveling in the same direction as it started. At 
this point, it must have an identical phase to its starting phase so that it can replicate itself and not 
destroy itself. Given that the wavevector along y is m, derive the waveguide condition.  

 

Figure 2.51  Upward and downward traveling waves along y set-up a standing wave. The condition for setting-up a 
standing wave is that the wave must be identical, able to replicate itself, after one round trip along y. 

Solution 

From Figure 2.51 it can be seen that the optical path is  

aBAAB 4  

With the ray under going a phase change   with each reflection the total phase change is  

 24  ma  
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The wave will replicate itself, is the phase is same after the one round-trip, thus 

ma m  224   

and since mmm

n
k 


 cos

2
cos 1

1   we get  





m

an
mm cos

)2(2 1  

as required.  

 

2.3  Dielectric slab waveguide   

(a) Consider the two parallel rays 1 and 2 in Figure 2.52. Show that when they meet at C  at a 
distance y above the guide center, the phase difference is 

   m = k12(a  y)cosmm 

(b) Using the waveguide condition, show that 

   )()( mmm m
a

y
my     

(c) The two waves interfering at C can be most simply and conveniently represented as  

)](cos[)cos()( ytAtAyE m      

Hence find the amplitude of the field variation along y, across the guide. What is your conclusion?  

 

Figure 2.52 Rays 1 and 2 are initially in phase as they belong to the same wavefront. Ray 1 experiences total internal 
reflection at A. 1 and 2 interfere at C. There is a phase difference between the two waves. 

Solution 

(a) From the geometry we have the following: 

  (a y)/AC = cos

and  C/AC = cos(2) 

The phase difference between the waves meeting at C is 

   = kAC kAC = k1AC k1ACcos(2) 

© 2013 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior 
to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. 
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



Solutions Manual (Preliminary) Chapter 2 2.5 
3 February 2013 
 

   = k1AC[1  cos(2)] k1AC[1 +  cos(2)] 

   = k1(a y)/cos][ 1 + 2cos2   1]

   =k1(a y)/cos][2cos2]

   = k1(a y)cos

(b) Given,  

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y
my   )()( mmm m

a

y
my     

(c) The two waves interfering at C are out phase by , 

  )](cos[)cos()( ytAtAyE m   

where A is an arbitrary amplitude. Thus, 

   )(cos)](cos[2 2
1

2
1 yytAE mm    

or     )cos()(cos2 2
1  tyAE m   = Eocos(t + ) 

in which m/2, and cos(t +) is the time dependent part that represents the wave phenomenon, 
and the curly brackets contain the effective amplitude. Thus, the amplitude Eo is 

  



  )(

22
cos2 mo m

a

ym
AE 

 

To plot Eo as a function of y, we need to find m for m = 0, 1 , 2…The variation of the field is a 
truncated) cosine function with its maximum at the center of the guide. See Figure 2Q1-1. 

2.4  TE field pattern in slab waveguide  Consider two parallel rays 1 and 2 interfering in the guide 
as in Figure 2.52. Given the phase difference 

   )()( mmm m
a

y
my    

between the waves at C, distance y above the guide center, find the electric field pattern E (y) in the 
guide. Recall that the field at C can be written as )](cos[)cos()( ytAtAyE m  . Plot the field 

pattern for the first three modes taking a planar dielectric guide with a core thickness 20 m, n1 = 1.455 
n2 = 1.440, light wavelength of 1.3 m. 
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Figure 2.52 Rays 1 and 2 are initially in phase as they belong to the same wavefront. Ray 1 experiences total internal 
reflection at A. 1 and 2 interfere at C. There is a phase difference between the two  

Solution 

The two waves interfering at C are out phase by , 

  )](cos[)cos()( ytAtAyE m   

where A is an arbitrary amplitude. Thus, 

  

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  )(
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cos2  =  Eocos(t + ) 

in which m/2, and cos(t +) is the time dependent part that represents the wave phenomenon, 
and the curly brackets contain the effective amplitude. Thus, the amplitude Eo is 

  



  )(
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AE 

 

To plot Eo as a function of y, we need to find m for m = 0, 1 and 2 , the first three modes. From 
Example 2.1.1 in the textbook, the waveguide condition is 

  mm mka  cos)2( 1  

we can now substitute for m which has different forms for TE and TM waves to find,  
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TM waves )(
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The above two equations can be solved graphically as in Example 2.1.1 to find m for each choice of m. 
Alternatively one can use a computer program for finding the roots of a function.  The above equations 
are functions of m only for each m.  Using a = 10 m,  = 1.3 m, n1 = 1.455 n2 = 1.440, the results are: 

TE Modes  m = 0  m = 1  m = 2 

m (degrees)  88.84    

m (degrees)  163.75  147.02  129.69

TM Modes  m = 0  m = 1  m = 2 

m (degrees)  88.84    

m (degrees)  164.08  147.66  130.60 

There is no significant difference between the TE and TM modes (the reason is that  n1 and n2 are very 
close). 

 

Figure 2Q4-1 Field distribution across the core of a planar dielectric waveguide 

We can set A = 1 and plot Eo vs. y using 

  



  )(

22
cos2 mo m

a

ym
E 

 

with the m and m values in the table above. This is shown in Figure 2Q4-1. 
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2.5  TE and TM Modes in dielectric slab waveguide  Consider a planar dielectric guide with a core 
thickness 20 m, n1 = 1.455 n2 = 1.440, light wavelength of 1.30 m. Given the waveguide condition, 
and the expressions for phase changes   and  in TIR for the TE and TM modes respectively, 
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using a graphical solution find the angle  for the fundamental TE and TM modes and compare their 
propagation constants along the guide. 

Solution 

The waveguide condition is 

  mm mka  cos)2( 1  

we can now substitute for m which has different forms for TE and TM waves to find,  
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The above two equations can be solved graphically as in Example 2.1.1 to find m for each choice of m. 
Alternatively one can use a computer program for finding the roots of a function.  The above equations 
are functions of m only for each m.  Using a = 10 m,  = 1.3 m, n1 = 1.455 n2 = 1.440, the results are: 

TE Modes  m = 0      

m (degrees)  88.8361 

m = k1sinm   7,030,883 m-1     

TM Modes  m = 0      

m (degrees)  88.8340  

m= k1sinm    7,030,878m-1

Note that 5.24 m-1 and the -difference is only 7.510-5 %. 

The following intuitive calculation shows how the small difference between the TE and TM waves can 
lead to dispersion that is time spread in the arrival times of the TE and TM optical signals. 
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Suppose that  is the delay time between the TE and TM waves over a length L. Then, 

  
)rad/s 1045.1(

)m 24.5(11
15

1
TMTE

TMTE 





 


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





vvL
 

    = 3.610-15 s m-1 = 0.0036 ps m-1. 

Over 1 km, the TE-TM wave dispersion is ~3.6 ps. One should be cautioned that we calculated 
dispersion using the phase velocity whereas we should have used the group velocity. 

 

2.6 Group velocity  We can calculate the group velocity of a given mode as a function of frequency 
 using a convenient math software package.  It is assumed that the math-software package can carry 
out symbolic algebra such as partial differentiation (the author used Livemath, , though others can also 
be used). The propagation constant of a given mode is  = k1sin where  and  imply m and m. The 
objective is to express  and  in terms of . Since k1 = n1/c, the waveguide condition is 
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where Fm() and a function of  at a given m. The frequency  is given by 
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 Both  and  are now a function of  in Eqs (1) and (2). Then the group velocity is found by 
differentiating Eqs (1) and (2) with respect to  i.e. 
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gv    Group velocity, planar waveguide (3) 

where Fm  = dFm/d is found by differentiating the second term of Eq. (1). For a given m value, Eqs (2) 
and (3) can be plotted parametrically, that is, for each  value we can calculate  and vg and plot  vg vs. 
.  Figure 2.11 shows an example for a guide with the characteristics in the figure caption. Using a 
convenient math-software package, or by other means, obtain the same vg vs. behavior, discuss 
intermodal dispersion, and whether the Equation (2.2.2)  is appropriate. 

 

Solution 
[Revised 4 February 2013] 

The results shown in Figure 2.11, and Figure 2Q6-1 were generated by the author using LiveMath based 
on Eqs (1) and (3). Obviously other math software packages can also be used. In the presence of say two 
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modes (TE0 and TE1) and near cutoff, the important conclusion from Figure 2.11 is that although the 
maximum group velocity is ~c/n2 (near cut-off) minimum group velocity is not c/n1 and can be much 
lower. For just 2 modes near cut-off, vgmax  c/n2 and vgmin  c/n1, that is, taking the group velocity as the 
phase velocity.  Thus, it is only approximate. Further, in the presence of many modes, group velocity is 
well below c/n2 and below c/n1 as shown in Figure 2Q6-2 

Notice that when there are many, many modes then the fastest is c/n1 (lowest mode) and the slowest is 
the highest mode at the operating frequency, in this example m = 65. The highest mode will have an 
incidence angle close to qc so that its group velocity will very roughly (c/n1)sinc = (c/n1)(n2/n1). Thus, 
in the presence of numerous modes vgmax  c/n1 and vgmin  (cn2/n1

2) so that the dispersion is 

  L = 1/vgmin 1/vgmax  n1/cn1
2/(cn2)  (n1/n2)(n2n1)/c  (n2n1)/c  

which is the same expression as before since n1/n2 is close to unity. Equation (2.2.2) can be used in the 
presence of just a few modes near cut-off or in the presence of many modes.

 

Figure 2Q6-1 Group velocity vs. angular frequency  for three modes, TE0 (red), TE1 (blue) and TE4 (orange) in a planar 
dielectric waveguide. The horizontal black lines mark the phase velocity in the core (bottom line, c/n1) and in the cladding 

(top line, c/n1). (LiveMath used) 
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Figure 2Q6-2 Group velocity vs. angular frequency   for many modes 

 

 

2.7  Dielectric slab waveguide Consider a dielectric slab waveguide that has a thin GaAs layer of 
thickness 0.2 m between two AlGaAs layers. The refractive index of GaAs is 3.66 and that of the 
AlGaAs layers is 3.40. What is the cut-off wavelength beyond which only a single mode can propagate 
in the waveguide, assuming that the refractive index does not vary greatly with the wavelength? If a 
radiation of wavelength 870 nm (corresponding to bandgap radiation) is propagating in the GaAs layer, 
what is the penetration of the evanescent wave into the AlGaAs layers? What is the mode field width 
(MFW) of this radiation?  

Solution 

Given n1 = 3.66 (AlGaAs),  n2 = 3.4 (AlGaAs), 2a = 210-7 m or a = 0.1 m, for only a single mode we 
need    

  
2

)(
2 2/12

2
2
1





 nn
a

V  

  

2

)40.366.3)(μm  1.0(2

2

)(2 2/1222/12
2

2
1





 





nna

= 0.542 m.  

The cut-off wavelength is 542 nm.  

When  = 870 nm,    

  
)μm  087.0(

)40.366.3)(μm  1(2 2/122 



V = 0.979 < /2 

Therefore,  = 870 nm is a single mode operation.  

For a rectangular waveguide, the fundamental mode has a mode field width   

  
979.0

1979.0
)μm  2.0(

1
2MFW2







V

V
awo = 0.404 m.  

The decay constant  of the evanescent wave is given by,   

  
μm  1.0

979.0


a

V =9.79 (m)-1 or 9.79106 m-1.  

The penetration depth 

   = 1/ = 1/ [9.79 (m)-1] = 0.102m. 

The penetration depth is half the core thickness. The width between two e-1 points on the field decays in 
the cladding is 

  Width = 2a + 2× = 0.2 m + 2(0.102) m = 0.404 m.  
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2.8 Dielectric slab waveguide  Consider a slab dielectric waveguide that has a core thickness (2a) 
of 20 m, n1 = 3.00, n2 = 1.50. Solution of the waveguide condition in Eq. (2.1.9) (in Example 2.1.1) 
gives the mode angles 0 and 1for the TE0 and TE1 modes for selected wavelengths as summarized in 
Table 2.7. For each wavelength calculate  and m and then plot  vs. m. On the same plot show the 
lines with slopes c/n1 and c/n2. Compare your plot with the dispersion diagram in Figure 2.10 

Table 2.7 The solution of the waveguide condition for a = 10 m, n1 = 3.00, n2 = 1.50 gives the incidence angles 0 and 1 
for modes 0 and 1 at the wavelengths shown. 

m  15  20  25  30  40  45  50  70  100  150  200 

0  77.8  74.52  71.5  68.7  63.9  61.7  59.74  53.2  46.4  39.9  36.45 

1  65.2  58.15  51.6  45.5  35.5  32.02  30.17  ‐  ‐  ‐  ‐ 

 

Solution 

Consider the case example for = 25 m = 25×10-6 m.  

The free space propagation constant k = 2/ = 225×10-6 m =  2.513×105 m-1. 

The propagation constant within the core is k1 = n1k = (3.00)( 2.513×105 m-1) = 7.540×105 m-1. 

The angular frequency  = ck = (3×108 m s-1)( 2.513×105 m-1) = 7.54×1013 s-1. 

Which is listed in Table 2Q8-1 in the second row under = 25 m. 

The propagation constant along the guide, along z is given by Eq. (2.1.4) so that 

  m = k1sinm 

or  0 = k1sin0 = (7.540×105 m-1)sin(71.5) = 7.540×105 m-1 = 7.15×105 m-1. 

which is the value listed in bold in Table 2Q8-1 for the m = 0 mode at  = 25 m. 

Similarly 1 = k1sin1 = (7.540×105 m-1)sin(51.6) = 7.540×105 m-1 = 5.91×105 m-1. 

which is also listed in bold in Table 2Q8-1. We now have both 0 and  1 at  = 2.54×1013 s-1. 

We can plot this 1 point for the m =0 mode at 0 = 7.15×105 m-1 along the x-axis, taken as the -axis, 
and  = 2.54×1013 s-1 along the y-axis, taken as the -axis, as shown in Figure 2Q8-1. We can also plot 
the 1 point we have for the m = 1 mode. 

Propagation constants () at other wavelengths and hence frequencies () can be similarly calculated. 
The results are listed in Table 2Q8-1 and plotted in Figure 2Q8-1.  This is the dispersion diagram. For 
comparison the dispersion  vs  for the core and the cladding are also shown. They are drawn so that 
the slope is c/n1 for the core and c/n2 for the cladding. 

Thus, the solutions of the waveguide condition as in Example 2.1.1 generates the data in Table 2Q8-1 
for 2a = 10 m, n1 = 3; n2 = 1.5. 

Table2Q8-1 Planar dielectric waveguide with a core thickness (2a) of 20 m, n1 = 3.00, n2 = 1.50.  

m  15  20  25  30  40  45  50  70  100  150  200 
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 

1013 s‐1  

12.6  9.43  7.54  6.283  4.71  4.19  3.77  2.69  1.89  1.26  0.94 

0  77.8  74.52  71.5  68.7  63.9  61.7  59.74  53.2  46.4  39.9  36.45 

1  65.2  58.15  51.6  45.5  35.5  32.02  30.17  ‐  ‐  ‐  ‐ 

0 

105 1/m 

12.3  9.08  7.15  5.85  4.23  3.69  3.26  2.16  1.37  0.81  0.56 

1 

105 1/m 

11.4  8.01  5.91  4.48  2.74  2.22  1.89  ‐  ‐  ‐  ‐ 

 

 

Figure 2Q8-1 Dispersion diagram for a planar dielectric waveguide that has a core thickness (2a) of 20 m, n1 = 
3.00, n2 = 1.50. Black, TE0 mode. Purple: TE1 mode. Blue: Propagation along the cladding. Red: Propagation 

along the core. 

Author's Note: Remember that the slope at a particular frequency  is the group velocity at that 
frequency. As apparent, for the TE0 (m = 0) mode, this slope is initially (very long wavelengths) along 
the blue curve at low frequencies but then along the red curve at high frequencies (very short 
wavelengths). The group velocity changes from c/n2 to c/n1. 
 

2.9 Dielectric slab waveguide  Dielectric slab waveguide  Consider a planar dielectric waveguide with 
a core thickness 10 m, n1 = 1.4446,  n2 = 1.4440. Calculate the V-number, the mode angle m for m = 0 
(use a graphical solution, if necessary), penetration depth, and mode field width, MFW = 2a + 2, for 
light wavelengths of 1.0 m and 1.5 m. What is your conclusion? Compare your MFW calculation 
with 2wo = 2a(V+1)/V. The mode angle 0, is given as 0 = 88.85 for  = 1 m and 0 = 88.72 for  = 
1.5 m for the fundamental mode m = 0. 

Solution 
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 = 1 m, n1 = 1.4446,  n2 = 1.4440, a = 5 m. Apply 

    2/12
2

2
1

2
nn

a
V 


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to obtain V = 1.3079 

Solve the waveguide condition 
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 graphically as in Example 2.1.1 to find: c = 88.35 and the mode angle (for m = 0) is o = 88.85.  

 Then use 
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to calculate the penetration depth: 

  = 1/= 5.33 m.  

  MFW = 2a + 2 = 20.65 m 

We can also calculate MFW from 

  MFW = 2a(V+1)/V = 2(5 m)(1.3079+1)/(1.3079) = 17.6 m (Difference = 15%) 

 = 1.5 m, V = 0.872, single mode. Solve waveguide condition graphically that the mode angle is o = 
88.72. 

  = 1/= 9.08 m.  

  MFW = 2a + 2 = 28.15 m. 

Compare with MFW = 2a(V+1)/V = 2(5 m)(0.872+1)/(0.872) = 21.5 m (Difference = 24%) 

Notice that the MFW from 2a(V+1)/V gets worse as V decreases. The reason for using MFW = 
2a(V+1)/V, is that this equation provides a single step calculation of MFW. The calculation of the 
penetration depth  requires the calculation of the incidence angle  and . 

Author's Note: Consider a more extreme case 

 = 5 m, V = 0.262, single mode. Solve waveguide condition graphically to find that the mode angle is 
o = 88.40. 

  = 1/= 77.22 m.  

  MFW = 2a + 2 = 164.4 m. 

Compare with MFW = 2a(V+1)/V = 2(5 m)(0.262 + 1)/(0.262) = 48.2 m (Very large difference.) 
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2.10    A multimode fiber Consider a multimode fiber with a core diameter of 100 m, core refractive 
index of 1.4750, and a cladding refractive index of 1.4550 both at 850 nm. Consider operating this fiber 
at  = 850 nm. (a) Calculate the V-number for the fiber and estimate the number of modes. (b) Calculate 
the wavelength beyond which the fiber becomes single mode. (c) Calculate the numerical aperture. (d) 
Calculate the maximum acceptance angle. (e) Calculate the modal dispersion  and hence the bit rate  
distance product. 

Solution 

Given n1 = 1.475, n2 = 1.455, 2a = 10010-6 m or a = 50 m and = 0.850 m. The V-number is, 

   
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The fiber becomes monomode when, 
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For wavelengths longer than 31.6 m, the fiber is a single mode waveguide. 

The numerical aperture NA is 

  = 0.242 2/1222/12
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2
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If max is the maximum acceptance angle, then, 
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Modal dispersion is given by 
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   = 66.7 ps m-1 or 67.6 ns per km 

Given that   0.29, maximum bit-rate is 
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© 2013 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior 
to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. 
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



Solutions Manual (Preliminary) Chapter 2 2.16 
3 February 2013 
 

i.e.  BL = 13 Mb s-1 km (only an estimate) 

We neglected material dispersion at this wavelength which would further decrease BL. Material 
dispersion and modal dispersion must be combined by   

   2
material

2
intermode

2
otal  t

For example, assuming an LED with a spectral rms deviation  of about 20 nm, and a Dm 200 ps 
km-1 nm-1 (at about 850 nm)we would find  the material dispersion as 

  material = (200 ps km-1 nm-1)(20 nm)(1 km)  4000 ps km-1 or 4 ns km-1, 

which is substantially smaller than the intermode dispersion and can be neglected. 

 

2.11 A water jet guiding light  One of the early demonstrations of the way in which light can be 
guided along a higher refractive index medium by total internal reflection involved illuminating the 
starting point of a water jet as it comes out from a water tank.  The refractive index of water is 1.330. 
Consider a water jet of diameter 3 mm that is illuminated by green light of wavelength 560 nm. What is 
the V-number, numerical aperture, total acceptance angle of the jet? How many modes are there? What 
is the cut-off wavelength? The diameter of the jet increases (slowly) as the jet flows away from the 
original spout. However, the light is still guided. Why?  

 

 

 

Light guided along a thin water jet. A small hole is made in a plastic soda drink 
bottle full of water to generate a thin water jet. When the hole is illuminated with a 
laser beam (from a green laser pointer), the light is guided by total internal 
reflections along the jet to the tray.  Water with air bubbles (produced by shaking 
the bottle) was used to increase the visibility of light. Air bubbles scatter light and 
make the guided light visible. First such demonstration has been attributed to Jean-
Daniel Colladon, a Swiss scientist, who demonstrated a water jet guiding light in 
1841. 

 

Solution 

V-number  

V = (2a/)(n1
2n2

2)1/2 = (2×1.5×10-3/550×10-9)(1.33021.0002)1/2 =  15104 

Numerical aperture 

NA= (n1
2n2

2)1/2 = (1.33021.0002)1/2 = 0.8814 

Total acceptance angle, assuming that the laser light is launched within the water medium  

sinmax = NA/n0 = 0.113/1.33 or max = 41.4°. 

Total acceptance 2o = 82.8 

Modes = M = V2/2 = (15104)2/2 = 1.14×108 modes (~100 thousand modes) 

The curoff wavelength corresponds to V = 2.405, that is V = (2a/)NA = 2.405 

c = [2aNA]/2.405 = [(2)(4 m)(0.8814)]/2.405 = 3.5 mm 
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The large difference in refractive indices between the water and the air ensures that total internal 
reflection occurs even as the width of the jet increases, which changes the angle of incidence.  

 

2.12 Single mode fiber  Consider a fiber with a 86.5%SiO2-13.5%GeO2 core of diameter of 8 m and 
refractive index of 1.468 and a cladding refractive index of 1.464 both refractive indices at 1300 nm 
where the fiber is to be operated using a laser source with a half maximum width of 2 nm. (a) Calculate 
the V-number for the fiber. Is this a single mode fiber? (b) Calculate the wavelength below which the 
fiber becomes multimode. (c) Calculate the numerical aperture. (d) Calculate the maximum acceptance 
angle. (e) Obtain the material dispersion and waveguide dispersion and hence estimate the bit rate 
distance product (BL) of the fiber. 

Solution 

(a) Given n1 = 1.475, n2 = 1.455, 2a = 810-6 m or a = 4 m and =1.3 m. The V-number is, 
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(b) Since V < 2.405, this is a single mode fiber. The fiber becomes multimode when 
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For wavelengths shorter than 1.13 m, the fiber is a multi-mode waveguide. 

(c) The numerical aperture NA is 

  = 0.108   2/1222/12
2

2
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(d) If max is the maximum acceptance angle, then, 
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
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NA = 6.2 

so that the total acceptance angle is 12.4. 

(e) At  =1.3 m, from D vs. , Figure 2.22, Dm  7.5 ps km-1 nm-1, Dw  5 ps km-1 nm-1. 

  2/1
2/1 




wm DD
L

 

   = |7.55 ps km-1 nm-1|(2 nm) = 15 ps km-1 +  10 ps km-1 

   = 0.025 ns km-1 

Obviously material dispersion is 15 ps km-1  and waveguide dispersion is 10 ps km-1  

The maximum bit-rate distance product is then 
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
L

BL = 23.6 Gb s-1 km.  

 

2.13 Single mode fiber  Consider a step-index fiber with a core of diameter of 9 m and refractive 
index of 1.4510 at 1550 nm and a normalized refractive index difference of 0.25% where the fiber is to 
be operated using a laser source with a half-maximum width of 3 nm. At 1.55 m, the material and 
waveguide dispersion coefficients of this fiber are approximately given by Dm = 15 ps km-1 nm-1 and Dw 
= 5 ps km-1 nm-1. (a) Calculate the V-number for the fiber. Is this a single mode fiber? (b) Calculate the 
wavelength below which the fiber becomes multimode. (c) Calculate the numerical aperture. (d) 
Calculate the maximum total acceptance angle. (e) Calculate the material, waveguide and chromatic 
dispersion per kilometer of fiber. (f) Estimate the bit rate distance product (BL) of this fiber. (g) What 
is the maximum allowed diameter that maintains operation in single mode? (h) What is the mode field 
diameter? 

Solution 

(a) The normalized refractive index difference  and n1 are given.  

 Apply,  = (n1n2)/n1 = (1.451 n2)/1.451 = 0.0025, and solving for n2 we find n2 = 1.4474. 

 The V-number is given by 
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2
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



nn
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V = 1.87; single mode fiber. 

(b) For multimode operation we need 
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  < 1.205 m. 

(c) The numerical aperture NA  is 

  = 0.1025. 2/1222/12
2

2
1 )4474.14510.1()(  nnNA

(d) If max is the maximum acceptance angle, then, 

  









on

NA
arcsinmax = arcsin(0.1025/1) = 5.89 

 Total acceptance angle 2amax is 11.8 . 

(e) Given, Dw = 5 ps km-1 nm-1 and Dm =  ps km-1 nm-1.  

 Laser diode spectral width (FWHM) 1/2 = 3 nm  

 Material dispersion 1/2/L = |Dm|1/2 = (15 ps km-1 nm-1)(3 nm)  

    = 45  ps km-1 

 Waveguide dispersion 1/2/L = |Dw|1/2 = (5 ps km-1 nm-1)(3 nm)  
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    = 5  ps km-1 

 Chromatic dispersion, 1/2/L = |Dch|1/2 =  (5 ps km-1 nm-1 + 15 ps km-1 nm-1)(3 nm)  

    =  30 ps km-1 

(f) Maximum bit-rate would be 

  
)km s  1030(

59.0

)/(

59.059.0
112

2/12/1









L

L
BL


 = 20 Gb s-1 km  

 i.e. BL  20 Mb s-1 km (only an estimate) 

(g) To find the maximum diameter for SM operation solve, 
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  2a = 11.5 m. 

(h) The mode filed diameter 2w is 

  = 12.2 m )879.2619.165.0(22 62/3   VVaw

 

2.14 Normalized propagation constant b  Consider a weakly guiding step index fiber in which (n1  
n2) / n1 is very small. Show that       
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Note: Since  is very small, n2/ n1  1 can be assumed were convenient. The first equation can be 
rearranged as 

  ;   2/12
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2
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where x is small. Taylor's expansion in x to the first linear term would then provide a linear relationship 
between  and b. 

Solution 
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Taylor expansion around  and truncating the expression, keeping only the linear term yields, 0x
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then using the assumption 1
2

1 
n

n
  we get 

)( 212 nnbnk   

and  
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

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as required.  

 

2.15  Group velocity of the fundamental mode  Reconsider Example 2.3.4, which has a single mode 
fiber with core and cladding indices of 1.4480 and 1.4400, core radius of 3 m, operating at 1.5 m. Use 
the equation 

  
21

2)/(

nn

nk
b







;   = n2k[1 + b] 

to recalculate the propagation constant . Change the operating wavelength to  by a small amount, say 
0.01%, and then recalculate the new propagation constant  . Then determine the group velocity vg of 
the fundamental mode at 1.5 m, and the group delay g over 1 km of fiber. How do your results 
compare with the findings in Example 2.3.4? 

Solution 

From example 2.3.4, we have 
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μs83.4g over 1 km. 
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Comparing to Example 2.3.4 

%03.0%100
0706.2

0706.20713.2
diff% 


  

 

2.16 A single mode fiber design  The Sellmeier dispersion equation provides n vs.  for pure SiO2 
and SiO2-13.5 mol.%GeO2 in Table1.2 in Ch. 1. The refractive index increases linearly with the addition 
of GeO2 to SiO2 from 0 to 13.5 mol.%. A single mode step index fiber is required to have the following 
properties: NA = 0.10, core diameter of 9 m, and a cladding of pure silica, and operate at 1.3 m. What 
should the core composition be? 

Solution 

The Sellmeier equation is  
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From Table1.2 in Ch.1.  Sellmeier coefficients as as follows 
Sellmeier  A1  A2  A3  1 

m 
2 

m 
3 

m 
SiO2 (fused silica)  0.696749  0.408218  0.890815  0.0690660  0.115662  9.900559 

86.5%SiO2‐13.5%GeO2  0.711040  0.451885  0.704048  0.0642700  0.129408  9.425478 

 

Therefore, for  = 1.3 m pure silica has n(0) = 1.4473 and SiO2-13.5 mol.%GeO2 has n(13.5)= 1.4682. 

Confirming that for NA=0.10 we have a single mode fiber 

  )1.0(
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)μm 5.4(222 
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a

n = 2.175 

Apply  to obtain =(0.12+1.44732)1/2 = 1.4508   2/12
2

2
1 nnNA    2/12

2
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The refractive index n(x) of SiO2-x mol.%GeO2, assuming a linear relationship, can be written as 
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nxn 





   

Substituting n(x) = n1 = 1.4508 gives x = 2.26. 

 

2.17 Material dispersion  If Ng1 is the group refractive index of the core material of a step fiber, then 
the propagation time (group delay time) of the fundamental mode is 

   cLNL // 1ggv    

Since Ng will depend on the wavelength, show that the material dispersion coefficient Dm is given 
approximately by 
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Using the Sellmeier equation and the constants in Table 1.2 in Ch. 1, evaluate the material dispersion 
at= 1.55 m for pure silica (SiO2) and SiO2-13.5%GeO2 glass.  

Solution 

From Ch. 1 we know that 
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Differentiate  with respect to wavelength  using the above relationship between Ng and n.  
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From Ch. 1 we know that the Sellmeier equation is 
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The Sellmeier coefficients for SiO2-13.5%GeO2. 

The 1, 2, 3 are in m. 

  A1  A2  A3  1 2 3 

SiO2‐13.5%GeO2  0.711040  0.451885  0.704048  0.0642700  0.129408  9.425478 

 

We can use the Sellmeier coefficient in Table1.2 in Ch.1 to find n vs. , dn/d and d2n/d, and, from 
Eq. (1), Dm vs as in Figure 2Q17-1. At  = 1.55 m, Dm =14 ps km-1 nm-1 
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Figure 2Q17-1 Materials dispersion Dm vs. wavelength (LiveMath used). (Other math programs such as 
Matlab can also be used.) 

 

2.18 Waveguide dispersion  Waveguide dispersion arises as a result of the dependence of the 
propagation constant on the V-number, which depends on the wavelength. It is present even when the 
refractive index is constant; no material dispersion. Let us suppose that n1 and n2 are wavelength (or k) 
independent. Suppose that  is the propagation constant of mode lm and k = 2π/in which is the free 
space wavelength. Then the normalized propagation constant b and propagation constant are related by  

    = n2k[1 + b]          (1) 

The group velocity is defined and given by 
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Show that the propagation time, or the group delay time,  of the mode is  
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and that the waveguide dispersion coefficient is  
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Figure 2.53 shows the dependence of V[d2(Vb)/dV2] on the V-number. In the range 1.5 < V < 2.4, 
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Show that, 
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which simplifies to 
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   Waveguide dispersion coefficient (9) 

Consider a fiber with a core of diameter of 8 m and refractive index of 1.468 and a cladding refractive 
index of 1.464, both refractive indices at 1300 nm. Suppose that a 1.3 m laser diode with a spectral 
linewidth of 2 nm is used to provide the input light pulses. Estimate the waveguide dispersion per 
kilometer of fiber using Eqs. (6) and (8).    

0

0.5

1

1.5

0 1 2 3
V-number

V[d2(Vb)/dV2]

 

Figure 2.53  d2(Vb)/dV2 vs V-number for a step index fiber. (Data extracted from W. A. Gambling et al. The Radio and 
Electronics Engineer, 51, 313, 1981.) 

Solution    

Waveguide dispersion arises as a result of the dependence of the propagation constant on the V-number 
which depends on the wavelength. It is present even when the refractive index is constant; no material 
dispersion. Let us suppose that n1 and n2 are wavelength (or k) independent. Suppose that  is the 
propagation constant of mode lm and k = 2/where is the free space wavelength. Then the 
normalized propagation constant b  is defined as, 
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Show that for small normalized index difference  = (n1  n2)/n1, Eq. (1) approximates to 
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which gives  as, 

   = n2k[1 + b]         (3) 

The group velocity is defined and given by 
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where we assumed    constant (does not depend on the wavelength). Given the definition of V, 
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From Eq. (5), 
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This means that  depends on V as, 
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Dispersion, that is, spread  in due to a spread  can be found by differentiating Eq. (6) to obtain, 

  

2

2
2

2

2
22

)(

)()(

dV

Vbd
V

c

Ln

dV

VbdV

c

Ln

dV

Vbd

dV

d

d

dV

c

Ln

d

d























   (7) 

The waveguide dispersion coefficient is defined as 
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Figure 2.53 shows the dependence of V[d2(Vb)/dV2] on the V-number. 

In the range 2 < V < 2.4, 
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so that Eq. (8) becomes, 
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We can simplify this further by using  
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Equation (6) should really have Ng2 instead of n2 in which case Eq. (10) would be 
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 Consider a fiber with a core of diameter of 8 m and refractive index of 1.468 and a cladding 
refractive index of 1.464 both refractive indices at 1300 nm. Suppose that a1.3 m laser diode with a 
spectral linewidth of 2 nm is used to provide the input light pulses. Estimate the waveguide dispersion 
per kilometer of fiber using Eqs. (8) and (11). 
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V = 2.094 

and   = (n1  n2)/n1 = (1.4681.464)/1.468 = 0.00273. 

From the graph, Vd2(Vb)/dV2 = 0.45, 
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  Dw  4.610-6 s m-2 or 4.6 ps km-1 nm-1 

Using Eq. (10)    
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  Dw  4.610-6 s m-2 or 4.6 ps km-1 nm-1 

For 1/2 = 2 nm we have,  

  1/2 = |Dw|L1/2 = (4.6 ps km-1 nm-1)(2 nm) = 9.2 ps/km 
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2.19 Profile dispersion  Total dispersion in a single mode, step index fiber is primarily due to 
material dispersion and waveguide dispersion. However, there is an additional dispersion mechanism 
called profile dispersion that arises from the propagation constant of the fundamental mode also 
depending on the refractive index difference . Consider a light source with a range of wavelengths  
coupled into a step index fiber. We can view this as a change in the input wavelength. Suppose that 
n1, n 2, hence depends on the wavelength . The propagation time, or the group delay time, g per unit 
length is  

   )/)(/1(//1 dkdcdd   gg v       (1) 

where k is the free space propagation constant (2/), and we used dcdk. Since  depends on n1,  
and V, consider g as a function of n1,  (thus n2), and V. A change in will change each of these 
quantities. Using the partial differential chain rule, 
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The mathematics turns out to be complicated but the statement in Eq. (2) is equivalent to 

  Total dispersion  = Material dispersion (due to ∂n1/∂) 

     + Waveguide dispersion  (due to ∂V/∂) 

      + Profile dispersion (due to ∂/∂) 

in which the last term is due to  depending on; although small, this is not zero. Even the statement in 
Eq. (2) above is over simplified but nonetheless provides an insight into the problem. The total 
intramode (chromatic) dispersion coefficient Dch is then given by 

   Dch = Dm + Dw + Dp        (3) 

in which Dm, Dw, Dp are material, waveguide, and profile dispersion coefficients respectively.  The 
waveguide dispersion is given by Eq. (8) and (9) in Question 2.18, and the profile dispersion coefficient 
is (very) approximately1, 
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in which b is the normalized propagation constant and Vd2(Vb)/dV2 vs. V is shown in Figure 2.53,we can 
also use Vd2(Vb)/dV2  1.984/V2. 

 Consider a fiber with a core of diameter of 8 m. The refractive and group indices of the core 
and cladding at  = 1.55 m are n1 = 1.4500, n 2 = 1.4444, Ng1 = 1.4680, Ng 2 = 1.4628, and d/d = 232 
m-1. Estimate the waveguide and profile dispersion per km of fiber per nm of input light linewidth at this 
wavelength. (Note: The values given are approximate and for a fiber with silica cladding and 3.6% 
germania-doped core.) 

 

Solution    
                                                 
1 J. Gowar, Optical Communication Systems, 2nd Edition (Prentice Hall, 1993). Ch. 8 has the derivation of this equation..  
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Total dispersion in a single mode step index fiber is primarily due to material dispersion and waveguide 
dispersion. However, there is an additional dispersion mechanism called profile dispersion that arises 
from the propagation constant of the fundamental mode also depending on the refractive index 
difference . Consider a light source with a range of wavelengths  coupled into a step index fiber. We 
can view this as a change in the input wavelength. Suppose that n1, n 2, hence depends on the 
wavelength . The propagation time, or the group delay time, g per unit length  is  
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g        (1)   

Since  depends on n1,  and V, let us consider g as a function of n1,  (thus n2) and V. A change 
in will change each of these quantities. Using the partial differential chain rule, 
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The mathematics turns out to be complicated but the statement in Eq. (2) is equivalent to 

  Total dispersion  = Materials dispersion (due to n1/) 

       + Waveguide dispersion  (due to V/) 

       + Profile dispersion (due to /) 

where the last term is due  depending on; although small this is not zero. Even the above statement in 
Eq. (2) is over simplified but nonetheless provides an sight into the problem. The total intramode 
(chromatic) dispersion  coefficient Dch is then given by 

   Dch = Dm + Dw + Dp       (3) 

where Dm, Dw, Dp are material, waveguide and profile dispersion coefficients respectively.  The 
waveguide dispersion is given by Eq. (8) in Question 2.6 and the profile dispersion coefficient away is 
(very) approximately, 
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where b is the normalized propagation constant and Vd2(Vb)/dV2 vs. V is shown in  Figure 2.53.  The 
term Vd2(Vb)/dV2  1.984/V2. 

Consider a fiber with a core of diameter of 8 m. The refractive and group indexes of the core and 
cladding  at  = 1.55 m are n1 = 1.4504, n 2 = 1.4450, Ng1 = 1.4676, Ng 2 = 1.4625. d/d = 161 m-1.  
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V = 2.03 

and    = (n1  n2)/n1 = (1.4504-1.4450)/1.4504 = 0.00372 

From the graph in Figure 2.53, when V = 2.03, Vd2(Vb)/dV2  0.50, 

Profile dispersion:  
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   Dp = 3.8 10-7 s m-1 m-1 or 0.38 ps km-1 nm-1  

Waveguide dispersion: 
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   Dw   5.6 ps km-1 nm-1 

Profile dispersion is more than 10 times smaller than waveguide dispersion. 

 

2.20 Dispersion at zero dispersion coefficient  Since the spread in the group delay  along a fiber 
depends on the , the linewidth of the sourcewe can expand  as a Taylor series in .  Consider the 
expansion at  = 0 where Dch = 0. The first term with  would have d /d as a coefficientthat is 
Dch, and at 0 this will be zero; but not the second term with ( that has a differential, d2/d or 
dDch/d. Thus, the dispersion at 0 would be controlled by the slope S0 of Dch vs.  curve at 0. Show 
that the chromatic dispersion at 0 is  
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A single mode fiber has a zero-dispersion at 0 = 1310 nm, dispersion slope S0 = 0.090 ps nm2 km. What 
is the dispersion for a laser with  = 1.5 nm? What would control the dispersion? 

Solution 

Consider the Taylor expansion for , a function of wavelength, about its center around, say at 0, when 
we change the wavelength by For convenience we can the absolute value of  at 0 as zero since we 
are only interested in the spread . Then, Taylor's expansion gives, 
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This can be further reduced by using a narrower laser line width since depends on (

2.21 Polarization mode dispersion (PMD) A fiber manufacturer specifies a maximum value of 0.05 
ps km-1/2 for the polarization mode dispersion (PMD) in its single mode fiber. What would be the 
dispersion, maximum bit rate and the optical bandwidth for this fiber over an optical link that is 200 km 
long if the only dispersion mechanism was PMD? 

Solution   
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2.22  Polarization mode dispersion  Consider a particular single mode fiber (ITU-T G.652 
compliant)  that has a chromatic dispersion of 15 ps nm-1 km-1. The chromatic dispersion is zero at 1315 
nm, and the dispersion slope is 0.092 ps nm-2 km-1. The PMD coefficient is 0.05 ps km-1/2.  Calculate the 
total dispersion over 100 km if the fiber is operated at 1315 nm and the source is a laser diode with a 
linewidth (FWHM)  = 1 nm. What should be the linewidth of the laser source so that over 100 km, 
the chromatic dispersion is the same as PMD? 
Solution 
Polarization mode dispersion for L = 100 km  is  = 2/1

PMDPMD LD 10005.0  ps = 0.5 ps 

We need the chromatic dispersion at 0, where the chromatic dispersion Dch = 0. For  L = 100 km, the 
chromatic dispersion is 

   2
0ch )(

2
  S

L
= 1000.092(1)2/2 = 4.60 ps 

The rms dispersion is  
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ch

2
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The condition for chPMD     is   
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D
  = 0.33 nm 

 

2.23 Dispersion compensation  Calculate the total dispersion and the overall net dispersion 
coefficient when a 900  km transmission fiber with Dch = +15 ps nm-1 km-1 is spliced to a compensating 
fiber that is 100 km long and has Dch = 110 ps nm-1 km-1. What is the overall effective dispersion 
coefficient of this combined fiber system? Assume that the input light spectral width is 1 nm.  

Solution 

Using Eq. (2.6.1) with  = 1 nm, we can find the total dispersion 

    = (D1L1 + D2L2)  

    = [(+15 ps nm-1 km-1)(900 km) + (110 ps nm-1 km-1)(100 km)](1 nm) 

    = 2,500 ps nm-1 for 1000 km. 

The net or effective dispersion coefficient can be found from  =  DnetL, 
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   Dnet  =  /(L = (2,500 ps)/[(1000 km)(1 nm)] = 2.5 ps nm-1 km-1 

 

2.24 Cladding diameter  A comparison of two step index fibers, one SMF and the other MMF shows 
that the SMF has a core diameter of 9 m but a cladding diameter of 125 m, while the MMF has a core 
diameter of 100 m but a cladding diameter that is the same 125 m. Discuss why the manufacturer has 
chosen those values. 

Solution    

For the single mode fiber, the small core diameter is to ensure that the V-number is below the cutoff 
value for singe mode operation for the commonly used wavelengths 1.1 m and 1.5 m. The larger total 
diameter is to ensure that there is enough cladding to limit the loss of light that penetrates into the 
cladding as an evanescent wave.  

For multimode fibers, the larger core size allows multiple modes to propagate in the fiber and therefore 
the spectral width is not critical. Further, the larger diameter results in a greater acceptance angle. Thus, 
LEDs, which are cheaper and easier to use than  lasers, are highly suitable. The total diameter of the core 
and cladding is the same because in industry it is convenient to standardize equipment and the minor 
losses that might accumulate from light escaping from the cladding do not matter as much over shorter 
distances for multimode fibers – they are short haul fibers. 

 

2.25 Graded index fiber  Consider an optimal graded index fiber with a core diameter of 30 m and 
a refractive index of 1.4740 at the center of the core and a cladding refractive index of 1.4530. Find the 
number of modes at 1300 nm operation. What is its NA at the fiber axis, and its effective NA? Suppose 
that the fiber is coupled to a laser diode emitter at 1300 nm and a spectral linewidth  (FWHM) of 3 nm. 
The material dispersion coefficient at this wavelength is about 5 ps km-1 nm-1. Calculate the total 
dispersion and estimate the bit rate  distance product of the fiber. How does this compare with the 
performance of a multimode fiber with same core radius, and n1 and n2? What would the total dispersion 
and maximum bit rate be if an LED source of spectral width (FWHM) 1/2  80 nm is used? 

Solution 

The normalized refractive index difference  = (n1n2)/n1 = (1.47401.453)/1.474 = 0.01425 

Modal dispersion for 1 km of graded index fiber is 
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Assuming a Gaussian output light pulse shape, rms material dispersion is, 

  m = 0.4251/2 = (0.425)(0.015 ns) = 0.00638 ns 

Total dispersion is 

  2222
intermodetotal 00638.0029.0  m = 0.0295 ns. 
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so that  B = 0.25/total = 8.5 Gb 

If this were a multimode step-index fiber with the same n1 and n2, then the rms dispersion would  
roughly  be 
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i.e.  BL = 12.8 Mb s-1 km (only an estimate!) 

The corresponding B for 1 km would be around 13 Mb s-1 

With LED excitation, again assuming a Gaussian output light pulse shape, rms material dispersion is 
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    = 0.17 ns 

Total dispersion is 

  2222
intermodetotal 17.0029.0  m = 0.172 ns 

so that  B = 0.25/total = 1.45 Gb 

The effect of material dispersion now dominates intermode dispersion. 

 

2.26 Graded index fiber  Consider a graded index fiber with a core diameter of 62.5 m and a 
refractive index of 1.474 at the center of the core and a cladding refractive index of 1.453. Suppose that 
we use a laser diode emitter with a spectral FWHM linewidth of 3 nm to transmit along this fiber at a 
wavelength of 1300 nm. Calculate, the total dispersion and estimate the bit-rate  distance product of the 
fiber. The material dispersion coefficient Dm at 1300 nm is 7.5 ps nm-1 km-1. How does this compare 
with the performance of a multimode fiber with the same core radius, and n1 and n2? 

Solution 

The normalized refractive index difference  = (n1n2)/n1 = (1.4741.453)/1.474 = 0.01425 

Modal dispersion for 1 km of graded index fiber is 
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Ln = 2.910-11 s or 0.029 ns. 

The material dispersion is 
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Assuming a Gaussian output light pulse shaper,  
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  intramode = 0.4251/2 = (0.425)(0.0225 ns) = 0.0096 ns 

Total dispersion is 

  222
intramode

2
intermode 0096.0029.0   rms = 0.0305 ns. 

so that  B = 0.25/rms = 8.2 Gb for 1 km 

If this were a multimode step-index fiber with the same n1 and n2, then the rms dispersion would roughly  
be 
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   = 70 ps m-1 or 70 ns per km 

Maximum bit-rate  would be 
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i.e.  BL = 12.7 Mb s-1 km (only an estimate!) 

The corresponding B for 1 km would be around 13 Mb s-1. 

 

2.27 Graded index fiber  A standard graded index fiber from a particular fiber manufacturer has a 
core diameter of 62.5 m, cladding diameter of 125 m, a NA of 0.275.  The core refractive index n1 is 
1.4555. The manufacturer quotes minimum optical bandwidth × distance values of 200 MHzkm at 850 
nm and 500 MHzkm at 1300 nm.  Assume that a laser is to be used with this fiber and the laser 
linewidth = 1.5 nm. What are the corresponding dispersion values? What type of dispersion do you 
think dominates? Is the graded index fiber assumed to have the ideal optimum index profile? (State your 
assumptions). What is the optical link distance for operation at 1 Gbs-1 at 850 and 1300 nm  

Solution 

We are given the numerical aperture NA = 0.275. Assume that this is the maximum NA at the core 
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We can now calculate intermodal dispersion 
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So the intramodal dispersion is  

       1-2

1
212292

1
2
intermodal

2
intramodal km ns 949.01043.451095.0   T  

For = 1300 nm, the total dispersion is 

1-
16

op

km ns 38.0
kms10500

19.019.0



 fT  

and  

       1-2

1
212292

1
2
intermodal

2
intramodal km ns 377.01043.451038.0   T  

For both 850 nm and 1300 nm intramodal dispersion dominates intermodal dispersion.  

96.1)018.01(2)1(2   

Gamma is close to 2 so this is close to the optimal profile index.  

 

2.28 Graded index fiber and optimum dispersion  The graded index fiber theory and equations tend 
to be quite complicated. If  is the profile index then the rms intermodal dispersion is given by2 

  2/1222
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      (1) 

where c1 and c2 are given by 
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2
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    (2) 

where  is a small unitless parameter that represents the change in  with . The optimum profile 
coefficient o is 

   
)25(

)3)(4(
2







o         (3) 

Consider a graded index fiber for use at 850 nm, with n1 = 1.475, Ng1 = 1.489,  = 0.015, d/d = 683 
m-1.Plot  in ps km-1 vs from  = 1.8 to 2.4 and find the minimum. (Consider plotting  on a 
logarithmic axis.)  Compare the minimum   and the optimum , with the relevant expressions in §2.8. 
Find the percentage change in  for a 10× increase in . What is your conclusion? 

Solution 

                                                 
2 R. Olshansky and D. Keck, Appl. Opt., 15, 483, 1976.  
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Figure 2Q28‐1 

From the graph in Figure 2Q28-1 0 = 2.04. 

Equation (3) gives the same value 0 = 2.040. 
From the graph in Figure 2Q28-1  
intermode/L = 31.87 ps km-1  
 
Consider Eq. (2.8.4) in §2.8, 

21intermode

320


c

n

L


= 31.93 ps km-1. 

From the graph in Figure 2Q28-1, a 3.4% change 
of  leads to 10 times increase of dispersion. It is 
therefore important to control the refractive 
profile. 
 

 

 

2.29 GRIN rod lenses Figure 2.32 shows graded index (GRIN) rod lenses. (a) How would you 
represent Figure 2.32(a) using two conventional converging lenses. What are O and O? (b) How would 
you represent Figure 2.32(b) using a conventional converging lens. What is O? (c) Sketch ray paths for 
a GRIN rod with a pitch between 0.25P and 0.5P starting from O at the face center. Where is O? (d) 
What use is 0.23P GRIN rod lens in Figure 2.32(c)?  

 

Figure 2.32 Graded index (GRIN) rod lenses of different pitches. (a) Point O is on the rod face center and the lens focuses 
the rays onto O' on to the center of the opposite face. (b) The rays from O on the rod face center are collimated out. (c) O is 

slightly away from the rod face and the rays are collimated out. 

Solution 

(a) and (b) 
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Figure 2Q29-1: (a) The beam bending from O to O using a GRIN rod can be achieved equivalently by using 
two converging lenses. O and O are the focal points of the lenses (approximately). (Schematic only). (b) The 

collimation of rays from a point source on the face of a GRIN rod can be equivalently achieved by a single 
converging lens whose focal length is 0.25P and O is the focal point. (Schematic only). 

 

(c) Consider a GRIN rod with 0.4P 

 

Figure 2Q29-2: Ray paths in a GRIN rod that has a pitch between 0.25P to 0.5P. (Schematic only.) 

 

 (d)   Since the point O does not have to be right on the face of the GRIN rod, it can be used to 
collimate a point source O by bringing the rod sufficiently close to O; a fixed annular spacer can “fix” 
the required proximity of the rod to O. Since the source does not have to be in contact with the face of 
the rod, possible damage (such as scratches) to the face are avoided. 

 

2.30 Optical Fibers  Consider the manufacture of optical fibers and the materials used. (a) What 
factors would reduce dispersion? (b) What factors would reduce attenuation? 

Possible Answers 

(a) It is essential to control of refractive index profile, core radius, and minimize variations in the 
refractive index due to variations in doping. 

(b) Minimize impurities. Reduce scattering by reducing density and hence refractive index n 
fluctuations (may not be readily possible). Use a glass material with a lower glass transition temperature 
so that the frozen n-variations are smaller.    

 

2.31 Attenuation A laser emitter with a power 2 mW is used to send optical signals along a fiber 
optic link of length 170 km. Assume that all the light was launched into the fiber. The fiber is quoted as 

© 2013 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior 
to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. 
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



Solutions Manual (Preliminary) Chapter 2 2.37 
3 February 2013 
 

having an attenuation of 0.5 dB/km. What is the output power from the optical link that a photodetector 
must be able to detect?  

  

Solution 

)exp(inout LPP   

where  

1
1

dB km 115.0
34.4

km dB 5.0

34.4





  

so 

pW 24.6)km 170km 115.0exp(mW 2 1
out  P  

 

 

2.32 Cut-back method of attenuation measurement Cut-back method is a destructive measurement 
technique for determining the attenuation   of a fiber. The first part of the experiment involves 
measuring the optical power Pfar coming out from the fiber at the far end as shown in Figure 2.54 Then, 
in the second part, keeping everything the same, the fiber is cut close to the launch or the source end. 
The output power Pnear is measured at the near end from the short cut fiber. The attenuation is then given 
by 

    = (10/L)log(Pfar/Pnear) 

in which L is the separation of the measurement points, the length of the cut fiber, and  is in dB per 
unit length. The output Pnear from the short cut fiber in the second measurement is actually the input into 
the fiber under test in the first experiment. Usually a mode scrambler (mode stripper) is used for 
multimode fibers before the input. The power output from a particular fiber is measured to be 13 nW. 
Then, 10 km of fiber is cut-out and the power output is measured again and found to be 43 nW. What is 
the attenuation of the fiber? 

 

Figure 2.54 Illustration of the cut-back method for measuring the fiber attenuation. S is an optical source and D is a 
photodetector 
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Solution   

 = (10/L)log(Pfar / Pnear) = (10/10 km) log(10/43) = 0.63 dB km-1 

 

2.33 Intrinsic losses  

(a) Consider a standard single mode fiber with a NA of 0.14. What is its attenuation at 1625 and at 
1490 nm?  How do these compare with the attenuation quotes for the Corning SMF-28e+, 0.200.23 
dB km-1 at 1625 nm and 0.21  0.24 dB km-1 at 1490 nm? 

(b) Consider a graded index fiber with a NA of 0.275. What would you expect for its attenuation at 
850 nm and 1300 nm? How do your calculations compare with quoted maximum values of 2.9 dB km-1 
at 850 nm and 0.6 dB km-1 at 1300 nm for 62.5 m graded index fibers? Actual values would be less.    

Solution 

(a)  When the wavelength is 1625 nm, 

  /expFIR BA   

1-11
FIR km dB 085.0

625.1

5.48
exp108.7exp 






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




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
 B
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4-1 μm km dB 918.014.006.263.006.263.0  NAAR  
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




R
R

A
a  

-1km dB 0.217 132.0085.0FIRtotal R  

When the wavelength is 1490 nm 

1-11
FIR km dB 0057.0

490.1

5.48
exp108.7exp 
















 B

A  

4-1 μm km dB 918.014.006.263.006.263.0  NAAR  

1
4

41

4
km dB 1863.0

μm 490.1

μm km dB 918.0 





R
R

A
a  

-1km dB 0.192 1863.00057.0FIRtotal R  

(b) Rayleigh scattering 

AR = 0.63 + 1.75×NA = 0.63 + 1.75×0.275 = 1.111 dB km-1 m4 

At 850 nm and 1300 nm the FIR  term is essentially zero and does not need to be included 

At 850 nm, 
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1km dB 2.13 

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41
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
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a  

At 1300 nm, 

1km dB 0.390 



4

41

4 μm .3001

μm km dB .1111


R

R

A
a  

 

2.34 Scattering losses and fictive temperature  

Rayleigh scattering process decreases with wavelength, and as mentioned in Ch. 1,  it is inversely 
proportional to 4. The expression for the attenuation R in a single component glass such as silica due 
to Rayleigh scattering is approximately given by two sets of different equations in the literature3, 

  fBTR Tkpn 

 28

4

3

3

8
         and    fBTR Tkn 


 22

4

3

)1(
3

8
     

in which is the free space wavelength, n is the refractive index at the wavelength of interest,  is the 
isothermal compressibility (at Tf) of the glass, kT is the Boltzmann constant, and Tf is a quantity called 
the fictive temperature (or the glass transition temperature) at which the liquid structure during the 
cooling of the fiber is frozen to become the glass structure. Fiber is drawn at high temperatures and as 
the fiber cools eventually the temperature drops sufficiently for the atomic motions to be so sluggish that 
the structure becomes essentially "frozen-in" and remains like this even at room temperature. Thus, Tf 
marks the temperature below which the liquid structure is frozen and hence the density fluctuations are 
also frozen into the glass structure. Use these two equations and calculate the attenuation in dB/km due 
to Rayleigh scattering at around the = 1.55 m window given that pure silica (SiO2) has the following 
properties: Tf  1180°C;  T  710-11 m2 N-1 (at high temperatures); n  1.45 at 1.55 m, p = 0.28. The 
lowest reported attenuation around this wavelength is about 0.14 dB/km. What is your conclusion? 

Solution 

fBTR Tkpn 

 28

4

3

3

8
 = 0.0308 km-1 or 4.34×0.0308 = 0.13 dB km-1

 

fBTR Tkn 

 22

4

3

)1(
3

8
 = 0.0245 km-1 or 4.34×0.0245 = 0.11 dB km-1 

The first equation appears to be the closest to the experimental value. However, note that the reported 
attenuation also has a contribution from the fundamental IR absorption. 

  /expFIR BA  , A = 7.81×1011 dB km-1; B= 48.5 m gives FIR = 0.02 dB km-1.  

Thus, adding FIR to R gives 

First equation + FIR attenuation = 0.13 + 0.02 = 0.015 dB km-1 

Second equation + FIR attenuation = 0.11 + 0.02 = 0.013 dB km-1 

                                                 
3 For example, R. Olshansky, Rev. Mod. Phys, 51, 341, 1979. 
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The experimental value lies exactly in between. 

 

2.35 Bending loss  Bending losses always increase with the mode field diameter (MFD). Since the 
MFD increases for decreasing V, 2w  2×2.6a/V,  smaller V fibers have higher bending losses. How does 
the bending loss vs. radius of curvature R behavior look like on a semilogarithmic plot (as in Figure 
2.39(a) for two values of the V-number V1 and V2 if V2 > V1. It is found that for a single mode fiber with 
a cut-off wavelength c = 1180 nm, operating at 1300 nm, the microbending loss reaches 1 dB m-1 when 
the radius of curvature of the bend is roughly 6 mm for  = 0.00825, 12 mm for  = 0.00550, and 35 
mm for  = 0.00275. Explain these findings. 

Solution 

We expect the bending loss vs. R on a semilogarithmic plot to be as in Figure 2Q35-1 (schematic) 

 

Figure 2Q35-1  Microbending loss  decreases sharply with the bend radius R. (Schematic only.) 

From the figure, given  = 1, R increases from R1 to R2 when V decreases from V1 to V2.   

Expected    R with V     (1)

Equivalently at one R = R1   with V     (2)

We can generalize by noting that  the penetration depth into the cladding  1/V. 

Expected    R with      (3)

Equivalently at one R = R1   with      (4) 

Eqs. (3) and (4) correspond to the general statement that microbending loss  gets worse when 
penetration  into cladding increases; intuitively correct based on Figure 2.32.

Experiments show that for a given  = 1, R increases with decreasing .   

Observation    R with      (5) 

Consider the penetration depth  into a second medium (Example 2.1.3), 
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Thus,   increases with decreasing .  

Thus, from Eqs. (3) and (6), we expect 

Expected    R with  with      (7) 

Thus Eq, (7) agrees with the observation in Eq. (5). 

NOTE 

If we plot vs. R on a log-log plot, we would find the line in Figure 2Q35-2, that is,   Rx, x = 0.62. 
Very roughly, from theoretical considerations, we expect 
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      (8)  

where  Rc is a constant (“a critical radius type of constant”)  that is proportional to . Thus, taking 
logs, 

        (9)  constantln 2/3  R

We are interested in the R behavior at a constant . We can lump the constant into ln and obtain, 

          (10) 3/2 R

As shown in Figure 2Q35-2, x = 0.62 is close to 2/3 given three points and the rough derivation 
above.  
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Figure 2Q35-2 The relationship between  and the radius of curvature R for a given amount of bending loss.   
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2.36  Bend loss reduced fibers  Consider the bend loss measurements listed in Table 2.8 for four 
difference types of fiber. The trench fibers have a trench placed in the cladding where the refractive 
index is lowered as shown in Figure 2.39 The nanoengineered fiber is shown in the Figure 2.55. There is 
a ring of region in the cladding in which there are gas-filled nanoscale voids. (They are introduced 
during fabrication.) A void in the ring has a circular cross section but has a length along the fiber that 
can be a few meters. These voids occupy a volume in the ring that is only 1 - 10%. Plot the bending loss 
semilogarithmically ( on a log scale and R on a linear scale) and fit the data to  micobend = Aexp(R/Rc) 
and find A and Rc. What is your conclusion? Suppose that we set our maximum acceptable bending loss 
to 0.1 dB/turn in installation (the present goal is to bring the bending loss to below 0.1 dB/turn). What 
are the allowed radii of curvature for each turn? 

Table 2.8 Bend radius R in mm,  in dB/turn. Data over 1.55 - 1.65 m range. (Note, data used from a number of sources: 
(a) M.-J. Li et al. J. Light Wave Technol., 27, 376, 2009; (b) K. Himeno et al, J. Light Wave Technol., 23, 3494, 2005; (c) L.-
A. de Montmorillon, et al. "Bend-Optimized G.652D Compatible Trench-Assisted Single-Mode Fibers" Proceedings of the 
55th IWCS/Focus, pp. 342-347, November, 2006.) 

Standard SMFa 

1550 nm 

Trench Fiber 1b 

1650 nm 

Trench Fiber 2c 

1625 nm 

Nanoengineered Fibera 

1550 nm 

R 
mm 


dB/turn

R 
mm 


dB/turn

R 
mm 


dB/turn

R 
mm 


dB/turn

5.0  15.0  7.50  0.354  5.0  0.178  5.0  0.031 

7.0  4.00  10.0  0.135  7.5  0.0619  7.5  0.0081 

10.0  0.611  15.0  0.020  10.0  0.0162  10.0  0.0030 

12.5  0.124      15.0  0.00092  15  0.00018 

16.0  0.0105             

17.5  0.0040             

 

 

Solution 
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Figure 2Q36-1 Attenuation per turn as a function of bend radius 

 

For a bending loss of 0.1 dB/turn, the allowed radii of curvature are (very roughly)  

Standard SMF, 13 mm; trench 1, 10 mm; trench 2, 6 mm; nanoengineered, 3 mm. 

2.37 Microbending loss  Microbending loss B depends on the fiber characteristics  and wavelength.  
We will calculate  approximately given various fiber parameters using the single mode fiber 
microbending loss equation (D. Marcuse, J. Op. Soc. Am., 66, 216, 1976)  

     )
3

2
exp(

)(2 2

3
2/1

2
1

22/3

22/1

RR
aKV

B 



     

where R is the bend radius of curvature, a = fiber radius,  is the propagation constant, determined by b, 
normalized propagation constant,  which is related to V,  = n2k[1 + b]; k = 2/ is the free-space 
wavevector;  = [2  n2

2k2];  = [ n1
2k2  ], and K1(x) is a first-order modified Bessel function, 

available in math software packages.  The normalized propagation constant b can be found from b = 
(1.14280.996V-1)2. Consider a single mode fiber with n1 = 1.450, n2 = 1.446, 2a (diameter) = 3.9 m. 
Plot B vs. R for = 633 nm and 790 nm from R = 2 mm to 15 mm. Figure 2.56 shows the experimental 
results on a SMF that has the same properties as the fiber above. What is your conclusion?  (You might 
wish to compare your calculations with the experiments of A.J. Harris and P.F. Castle, IEEE J. Light 
Wave Technol., LT4, 34, 1986). 

© 2013 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior 
to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. 
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



Solutions Manual (Preliminary) Chapter 2 2.44 
3 February 2013 
 

 

Solution 

Given:   n1 = 1.450, n2 = 1.446, 2a (diameter) = 3.9 m;  = 790 nm, we can calculate the following: 

k = 2/= 7.953106 m-1; 

2
1

2/12
2

2
1

2

)(

n

nn 
 = 0.00275;  

)μm  790.0(

)446.1450.1)(μm  9.3(2
)(

2 2/122
2/12

2
2
1








nn
a

V = 1.67; 

2
996.0

1428.1 





 

V
b = 0.2977; 

 = n2k[1 + b] = 1.1510107 m-1;  = [2  n2
2k2] = 4.6544105 m-1;   

 = [ n1
2k2  ] = 7.175105 m-1; 

Substitute these values into   

    )
3

2
exp(

)(2 2

3
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22/3

22/1

RR
aKV

B 

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    

to find  )
0020.0

exp()1003.1( 2/13 R
RB    

which is plotted in Figure 2Q37-1 on the LHS . 

Given:   n1 = 1.450, n2 = 1.446, 2a (diameter) = 3.9 m;  = 633 nm, we can calculate the following: 

k = 2/= 9.926106 m-1; 

2
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2
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



nn
a

V = 2.08; 
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2
996.0

1428.1 





 

V
b = 0.44127; 

 = n2k[1 + b] = 1.437107 m-1;  = [2  n2
2k2] = 7.073105 m-1;   

 = [ n1
2k2  ] = 7.99105 m-1; 

Substitute these values into   

    )
3

2
exp(

)(2 2

3
2/1

2
1

22/3

22/1

RR
aKV

B 



    

to find  )
00089.0

exp()1008.2( 2/13 R
RB    

which is plotted on the RHS of Figure 2Q37-1. 

 

Figure 2Q37-1  Bending loss B vs. bend radius R (LiveMath used.)  

Results compare reasonably with the experiments in Figure 2.56 given the approximate nature of the 
theory. Note that the calculated attenuation is per meter (for 1 meter) whereas the attenuation in Figure 
2.56 is for a 10 cm fiber, so that for a 1 m of fiber, the observed attenuation will be 10 times higher. 

2.38  Fiber Bragg grating  A silica fiber based FBG is required to operate at 850 nm.  What should be 
the periodicity of the grating ? If the amplitude of the index variation n is 2×10-5 and total length of 
the FBG is 5 mm, what are the maximum reflectance at the Bragg wavelength and the bandwidth of the 
FBG? Assume that the effective refractive index n  is 1.460. What are the reflectance and the bandwidth 
if n is 2×10-4? 

Solution 

Using equation for Bragg wavelength  nB 2  one can get 
n
B

2


  = 291.1 nm. The results of further 

calculations for n = 2×10-5 and 2×10-4 are collected in Table. 
 

  FBG #1 FBG #2

n  2×10‐5  1×10‐4 

© 2013 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior 
to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. 
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



Solutions Manual (Preliminary) Chapter 2 2.46 
3 February 2013 
 

(1/m)  73.92  739.2 

L  0.37  3.7 

Grating is  weak  strong 

)(tanh2 LR    0.125  0.998 

n
B




2

strong

4
 , nm NA  0.47 

Ln
B
2

weak

  , nm  0.099  N/A 

 

The parameter L for FBG#1 with n = 2×10-5 is equal to 0.37 which is a weak grating. The parameter 
L for FBG#2 with n = 2×10-4 is equal to 3.7 which is a strong grating. 

 

2.39  Fiber Bragg grating sensor array  Consider a FBG strain sensor array embedded in a silica 
fiber that is used to measure strain at various locations on an object. Two neighboring sensors have 
grating periodicities of 1 = 534.5 nm and 2 = 539.7 nm. The effective refractive index is 1.450 and the 
photoelastic coefficient is 0.22. What is the maximum strain that can be measured assuming that (a) only 
one of the sensors is strained; (b) when the sensors are strained in opposite directions ? What would be 
the main problem with this sensor array? What is the strain at fracture if the fiber fractures roughly at an 
applied stress of 700 MPa and the elastic modulus is 70 GPa? What is your conclusion? 

Solution 

Initially the Bragg wavelengths of two sensors are 11 2  nB =1550.05 nm and 22 2  nB = 1565.13 
nm, respectively.  When the second sensor is stretched its effective refractive index changes due to 
photoelastic effect and there is also a change in the period, both of which leads to  

   )1( 2
2
1

22 eBB pn   

and 2B  shifts towards 1B .  

(a) The separation between the Bragg wavelengths is B = 12 BB   =  1565.13 – 1550.05 = 15.08 nm  

The shift due to strain is (only B is strained) 

  2B =     eeB pnnpn 2
2
1

2
2

2
1

2 121   

Maximum strain occurs when  

  B =   eBB pnnnn 2
2
1

21212 1222   

  
)1( 2

2
1

2

12

epn


 = 0.012 or 1.2% 

The strain at fracture is given by strain = stress / elastic modulus =  700×106 / 70×109 = 0.01 or 1%. The 
fiber is likely to fracture before it reaches the maximum strain. 
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(b)  Consider the sensors strained in opposite directions. The separation between the Bragg 
wavelengths is still 12 BB    =1565.13 – 1550.05 = 15.08 nm. Note that 12 BB   = )(2 22 n  

Shift due to strain is now  

  B =       eeBeB pnnpnpn 2
2
1

21
2

2
1

1
2

2
1

2 1)(211   

Which must be 12 BB   so that 

   epnnn 2
2
1

2122 1)(2)(2   

   epn2
2
1

21

22

1)( 


 = 0.0063 or 0.63% (about half the above value). 

The main problem is precise compensation of temperature. 
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