30

Solutions to Exercises

Exercises 2.1

1.

(a) [BB] {—v/5,V5}

o {1,3,5,15,-1,-3,-5,—15}

(c) [BB]{0, ——% (Although ++/2 are solutions to the equation, they are not rational.)
@ {-1,0,1,2,3}

(e) This is the empty set. There are no numbers less than —4 and bigger than +4.

(a) [BB] For example, 1 +4, 1 + 24,1 + 37, —8 — 53 and 17 — 434.

(b) For example, {1 — 2v/2,1 — 5v/2,1 — 7/2, 316 — 21/2 and 394 — 7/2}.

©Ifz=0y==25andz/y =0. Ifz =1,y = +v/24, and z/y = +1//24 = +/24/24.
Ifz = 2,y = +v/21 and z/y = £2v/21/21. Five elements of the given set are 0, v/24/24,
—V/24/24, 21/21/21 and —2+/21/21.

@ {2,3,5,6,8}.

(a) [BB]{1,2},{1,2,3}, {1,2,4}, {1,2,3,4}

() 0,{1}, {2}, {1,2}

© 0, {1}, {2}, {3}, {4}, {1,3}, {1,4}, {2,3}, {2, 4}, {3,4}, {1,3,4}, {2,3,4}

) {3}, {4}, {1,3}, {1,4}, {2,3}, {2,4}. {3,4}, {1,2,3}, {1,2,4}, {1, 3,4}, {2,3,4}, {1,2,3,4}

@ {1,2,3},{1,2,4}, {1,2,3,4}

® 0, {1}, {2}.

4. [BB] Only (c) is true. The set A contains one element, {a, b}.

5.

(a) [BB] True. 3 belongs to the set {1,3,5}.

(b) False. {3} is a subset of {1, 3,5} but not a member of this set.

(c) True. {3} is a proper subset of {1, 3,5}.

(d) [BB]False. {3,5} is a subset of {1, 3,5}.

(e) False. Although {1, 3,5} is a subset of itself, it is not a proper subset.

(f) False. If a + 2b is in the given set, a is even, so a + 2b is even and can’t equal 1.

(g) False. Ifa +bv/2 =0and b # 0, then /2 = —% is the quotient of rational numbers and, hence,
rational. But this is not true.

(a) [BB] {0}; () {0,{0}}; © {0,{0,{0}},{0},{{0} }}.
(a) [BB] True. The empty set is a subset of every set.

(b) True. The empty set is a subset of every set.

(c) False. The empty set does not contain any elements.

(d) True. {0} is a set containing one element, namely, {.

(e) [BB]False. {1, 2} is a subset of {1,2,3,{1,2,3}}.

(f) False. {1, 2} is not an element of {1,2,3,{1, 2, 3}}.

(g) True. {1,2} is a proper subset of {1,2, {{1,2}}}.

(h) [BB] False. {1,2} is not an element of {1,2, {{1,2}}}.
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(i) True. {{1,2}} contains just one element, {1,2}, and this is an element of {1,2, {1,2}}.

8. [BB] Yes it is; for example, let z = {1} and A = {1, {1}}.

9.

10.

11.

12.

13.

14.

(@) i. {a,b,c,d} ii. [BB] {a,b,¢c}, {a,b,d}, {a,c,d}, {b,c,d}
iii. {a, b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d} iv. {a}, {b}, {c}. {d} v. 0
(b) 16
(a) If A =0, then P(A) = {0} is a set containing one element, so its power set contains two elements.

(b) P(A) contains two elements; P(P(A)) has four elements.

(a) [BB] 4; (b) [BB] 8.

(c) [BB] There are 2™ subsets of a set of n elements. (See Exercise 15 in Section 5.1 for a proof.)

(a) [BB] False. Let A = {2}, B = {{2}}, C = {{{2}}}. Then A is an element of B (thatis, A € B)
and B is an element of C (B € C), but A is not an element of C (since B is C’s only element).
(b) True. If z € A, then x € B since A C B. Butsince z € B, then z € C since B C C.

(c) True. As in the previous part, we know that A C C. To prove A # C, we note that there is some
x € C such that z ¢ B (since B ;C,: C). Then, since x ¢ B, z ¢ A. Therefore, x is an element of
C which is not in A, proving A # C.

(d) [BB] True. A € B means that A belongs to the set B. Since B is a subset of C, any element of B
also belongs to C. Hence, A € C.

(e) False. For example, let A = {1}, B = {{1},2} and C = {{1},2,3}. Then A € B, B C C, but
AgZC. A

(f) False. Let A = {1}, B={1,2},C ={{1,2},3}. Then AC Band Be C,but A¢ C.

(g) False. Same example as 12(f) where A Z C.

(a) This is false. As a counter-example, consider A = {1}, B = {2}. Then A is not a subset of B
and B is not a proper subset of A.

(b) The converse of the implication in (a) is the implication B G A — A ¢ B. This is true. Since
BC A there exists some element a € A which is not in B. Thus A is not a subset of B.

(a) [BB] True. (—) If C € P(A), then by definition of “power set,” C' is a subset of A; that is,
C CA.

(«—)If C C A, then C is a subset of A and so, again by definition of “power set,” C € P(A).
(b) True. (—) Suppose A C B. We prove P(A) C P(B). For this, let X € P(A). Therefore, X is

a subset of A; that is, every element of X is an element of B. Since A C B, every element of X
must be an element of B. So X C B; hence, X € P(B).

(+—) Conversely, assume P(A) C P(B). We must prove A C B. For any set A, we know that
A C Aand, hence, A € P(A). Here, with P(A) C P(B), we have, therefore, A € P(B); that
is, A C B, as desired.

(c) The double implication here is false because the implication — is false. If A = (), then P(A) =
{0} and {0} # 0.
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Exercises 2.2
1. (a) [BB]1A={1,2,3,4,5,6}, B={-1,0,1,2,3,4,5},C = {0,2, —2}.
(b) AuC ={-2,0,1,2,3,4,5,6}, BnC = {0,2},
B\ C={-1,1,3,4,5}, A® B = {-1,6,0},
C x (BN C) ={(0,0),(0,2),(2,0), (2,2), (—2,0), (-2,2)},
(ANB)NC={6},AN(B\C)=1{2,6},
(BU®) N {0} =0.
© §={(1,-1),(2,0),(3,1),(4,2),(5,3),(6,4)}; T = {(1,2), (2,2)}-
2. () [BBISNT = {v2,25}, SUT = {2,5,v2, 25,7, 5,4,6,3},
T x (SNT) = {(4,v2),(4,25), (25,v2), (25,25), (v'2, V2),
(v2,25), (6,v2), (6,25), (3, v2), (3,25)}-
(b) [BB1ZUS = {Vv2,7,5,0,1,-1,2,-2,...15 Zn S = {2,5,25};
ZuT ={v2,3,0,1,-1,2,-2,..},ZnT = {4,25,6}.
©) ZN(SUT)={2,5,25,4,6} = (ZN S)U(ZNT). The two sets are equal.
d Zu(SnT)={v2,0,1,-1,2,-2,...} =ZU {v/2} = (ZU S) N (ZUT).

The two sets are equal.
A

3. (a) [BB]{1,9,0,6,7}; (b) {4,6,5}; (c) {0,1}.
4. A={(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)} and B = {£3, £1,+2}.
5. (2) [BB] {c,{a,b}}; (®) {0}; ©) 4 (d) 0;
(e) [BB] 0; ® {A}.

6. (a) [BB] A¢=(-2,1]; (b) A® = (—00, —3] U (4, 00); (c) A°=R
7. (@ YNZ=1{3,4,5},s0X® (Y N2Z)={1,25}

b (XUuY)X=XnY*=X\Y=({1}.
8. (a) [BB] The subsets of A containing {1,2} are obtained by taking the union of {1, 2} with a subset

of {3,4,5,...,n}. Their number is the number of subsets of {3,4, 5, ...,n} which is 2" 2. (See
Exercise 11 of Section 2.1.)

(b) The subsets B which have the property that Bn{l 2} = () are exactly the subsets of {3, 4, 5,...,n}
and these number 2"~2,

(c) The subsets B which have the property that B U {1,2} = A are precisely those subsets which

contain {3,4, 5, ...,n} and these correspond, as in (a), to the subsets of {1, 2}. There are four.
9. [BB] (a,b)¢ = (—00,a] U [b,0), [a,b)¢ = (—00,a)U [b,00), (a,00)®=(—00,a],
(—00,b]¢ = (b, ).

10. (a) [BB]CS C T; ®)[BBIM NP =0 )M ¢ P; dCS\TCP;
e) (MUuCS)NPCTe ‘

11. (a) Negation: C'S € T'; Converse: T' C CS.
(b) Negation: M N P # 0; Converse: PC M€or PN M =0,
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12.

13.

14.
15.

16.
17.

18.

19.

20.

(c) Negation: M C P; No converse since the statement is not an implication.
(d) Negation: (M U CS) NP € T*; Converse: T¢ C (M UCS) N P.
(e) Negation: (M U CS)NPNT # P; Converse T° C (M UCS) N P.

(@ [BBIENP#0 ® 0€Z~N ) Ncz
d ZgN () (P~{2})cEe ® 2€ENP
(& ENP={2}

(a) [BB] Since A_3 C A3, A3U A_3 = As.

(b) Since A_3 C A3z, A3 N A 3=A_3.

© AsN(A3)°={a€Z|-3<a<8}={-2-1,0,1,2,3}.
(d) Since Ag C Ay C Az C A3 C Ay, wehave ()1, A; = Ao.

[BB] Region 2 represents (ANC)\.B. Région 3 represents ANBNC region 4 represents (ANB)\C.

@ ee c

® i (AUB)NC ={56} .
ii. AN (BN A)=A={1,2,4,7,8,9}
iii. (AUB)~ (ANC) =1{1,2,3,4,9}
v. A®C ={1,2,4,7,8,9} :
v. (ANC) x (AN B) ={(5,1),(5,2), (5,4), (6, 1), (6,2), (6, 4)}

(a) [BB] A C B, by Problem 7; (b) B C A, by PAUSE 4 with A and B reversed.

[BB] Think of listing the elements of the given set. There are n pairs of the form (1,b), n — 1 pairs of
the form (2,5), n — 2 pairs of the form (3, b), and so on until finally we list the only pair of the form

(n,b). Theansweris 14+2+3+---+n = in(n+1).

Since (1,1) € 4, (2,1) and (2,2) are in A. Since (2,1) € A, we get
(3,1) and (3,2) in A and since (2,2) € 4,(3,3) € A. Now

(3,1) € A— (4,1) and (4,2) € 4;(3,2) € A — (4,3) € A and
(3,3) € A — (4,4) € A. The points shown so far which belong to A
are plotted in the picture to the right and this makes it seem very
plausible that A contains the set {(m,n) € N x N | m > n}.

4
3| .
2

1

(@) Letz € B. Certainly z is also in A or in A°. This suggests cases.

Casel:Ifz € A, thenz € ANB,soz € C.
Case2: Ifx ¢ A, thenz € A°NB,soz € C.
In either case, z € C,s0 B C C. '
(b) [BB] Yes. Given ANB =ANC and AN B = A°NC, certainly we have AN B C C and

AN B C C so, from (a), we have that B C C. Reversing the roles of B and C in (a), we can
also conclude that C' C B; hence, B = C.

(@) The Venn diagram shown in Fig. 2.1 suggests the following counterexample: Let A = {1,2,3,4},
B ={3,4,5,6} and C' = {2,3,5,7}. Then AU(BNC) = AU {3,5} = {1,2,3,4,5} whereas
(AuB)NC ={1,2,3,4,5,6} N C = {2,3,5}.
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21.

22.

23.

24.

25.

26.

27.

Solutions to Exercises

(b) First, we prove AU(BNC) C (AUB)N(AUCQ).

Soletz € AU(BNC). Thenz € Aorz € BNC.Ifz € A, thenz € AUBandz € AUC, so
z€(AUB)N(AUC).Ifz € BNC,thenz € Bandz € Csox € AUB and x € AUC; that
is, z € (AU B) N (AU C). In either case, z € (AU B) N (AU C) giving the desired inclusion.
Second, we prove (AU B)N(AUC) C AU (BNC).

Soletz € (AUB)N(AUC). Thus,z € AUBandz € AUC.Ifz € A, thenz € AU(BNC).
If z ¢ A, then we must have z € B and z € C; thatis,z € BNC,soz € AU(BNC). In either
case, £ € AU (B N C) giving the desired inclusion and equality.

We use the fact that (X °)° = X for any set X.

LetX =A°andY = B¢. Then A = Xand B =Y, 50 (ANB)® = [X°NY*°|¢ = [(X UY)°]° (by
the first law of De Morgan) = X UY = A°U B¢, as required.

[BB] Using the fact that X \'Y = X N Y, we have

(ANB)NC=(ANB)NC*=AN(B°NC)=AN(BUC)*=AN(BUC).

We use the laws of De Morgan and the facts that (X°)¢ = X and X N X =  for any set X. We have
[(AUB)°N(A°UC)¢l*\ D¢ = [(A°NB°)N(ANCe)|*\ D = ¢\ D* =U~\D* =UN(D°)® =
UNnD=D.

AN(BNC)=AN(BNC) =AN(BNC®)* =AN(B°UC)=(ANB)U(ANC) =
(ANBYU(AN(C®)) =(ANB)U(ANCO)."

(@) [BBI(AUBUC)*=[AU(BUC)|*=A°N(BUC)*=A°Nn(B°NC°) = A°NnB°NC-.
(ANBNC)*=[AN(BNC)|]c=A°U(BNC)*= AU (B°UC°) = A°UB°UC".

b (ANB~NO)NA (ANBNC%)*NA=(A°UB°UC)NA

(AN(A°UB9))U(ANC)=(ANA)U(ANB°)U(ANC)

PU(ANBY)U(ANC)=(ANB)U(ANC)

(ANB)U(ANC)

(a) [BB] Looking at the Venn diagram at the right, A @ B consists A B

of the points in regions 1 and 3. To have A ® B = A, we must
have both regions 2 and 3 empty; that is, B = (). On the other @
hand, since A @ @) = A, this condition is necessary and
sufficient.

(b) Looking at the Venn diagram, AN B is the set of points in region 2 while AU B is the set of points
in regions 1, 2 and 3. Hence, AN B = A U B if and only if regions 1 and 3 are both empty; that
is, if and only if A = B.

(a) [BB] This does not imply B = C. For example, let A = {1,2}, B = {1}, C = {2}. Then
AUB=AUC,butB #C.

(b) This does not imply B = C. For example, let A = {1}, B = {1,2}, C = {1,3}. Then
ANB=ANC=A,butB #C.

(c) This does imply B = C, and here is a proof. First let b € B. Then, in addition, either b € A or
b¢ A

Casel: b ¢ A
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28.

29.

30.

In this case,b € A® B,sob € A® C and since b ¢ A it follows that b € C.

Case 2: b € A. Here we have b € BN A and, hence,b ¢ A® B,sob¢ A® C. Since b € A, we
must have b € C (otherwise,bc ANC C A C).

In either case, we obtain b € C. It follows that B C C. A similar argument shows C C B and,
hence, C = B. :

(d) This is false since for A =@, A x B = A x C = { regardless of B and C.

(a) True. Let (a,b) € A x B. Sincea € Aand A C C,wehavea € C. Sinceb € Band B C D,
b€ D. Thus, (a,b) e Cx Dand A x BC C x D.

(b) False: Consider A = {1}, B ={2,3},C = {1,2,3}.
(c) False. Let A= {1}, B=0,C = {2}, D ={3}. Then Ax B =0 C {(2,3)} = C x D, but
AgC.

(d) False since, by (b), the implication « is false.

(e) [BB] True. Letz € A. Thenz € AU B, soz € AN B and, in particular, z € B. Thus, A C B.
Similarly, we have B C A, so A = B.

Let (z,y) € (AN B) x C. Thismeansz € AN Bandy € C. Hence, z € A,z € B,y € C. Thus,
(z,y) € Ax Cand (z,y) € B x Ciie., (z,y) € (A x C)N (B x C). Therefore, (AN B) x C C
(AxC)Nn(BxC).

Now let (z,y) € (A x C) N (B x C). This means that (z,y) € A x C and (z,y) € B x C); that
is,trec A,re€ B,yec C,soxz € ANBandy € C. Hence, (z,y) € (AN B) x C. Therefore,
(AxC)N (B x C) C (AN B) x C and we have equality, as desired.

(a) False. Forexample, let A = {1,2}, B = {1} and C' = {2}. Then AN (BUC) = {1,2}\{1,2} =
0,but ( ANB)U(ANC) ={2}u{1} ={1,2}.

(b) True. Let (z,y) € (AN B) x C. Thismeansthatz € AN\ Bandy € C; thatis,z € A,z ¢ B,

y € C. Hence, (z,y) € Ax C,but (z,y) ¢ Bx C, so (z,y) € (A x C)\ (B x C). Therefore,
(ANB)xCC(AxC)N(BxO).
Now let (z,y) € (A x C)\ (B x C). This means that (z,y) € A x C, but (z,y) ¢ B x C. Since
(z,y) € AxC,wehavez € A,y € C. Since y € C and (z,y) ¢ B x C, we must have z ¢ B;
thatis,z € ANB,y € C,s0(z,y) € (AN B)xC. Therefore, (AxC)\(BxC) C (ANB)xC
and we have equality as claimed.

(c) [BB] True. Let (z,y) € (A® B) x C. This means thatz € A® B andy € C; thatis,x € AUB,
z¢ ANB,ye C.Ifz € A, thenz ¢ B,so (z,y) € (AxC) N (BxC). Ifz € B, then
z ¢ A, so(z,y) € (BxC)N\ (AxC). Ineither case, (z,y) € (A x C)® (B xC). So
(A®B)xCC(AxC)®(BxO0).
Now, let (z,y) € (A x C) & (B x C). This means that (z,y) € (A x C) U (B x C), but
(z,y) ¢ AxC)N(BxC). If (z,y) € Ax C, then (z,y) ¢ BxC,soz € A,y € C
and, therefore, z ¢ B. If (z,y) € B x C, then (z,y) ¢ AxC,soz € B,y € C and,
therefore, z ¢ A. In either case, z € A@ Bandy € C, so (z,y) € (A ® B) x C. Therefore,
(Ax C)® (B x C) C (A® B) x C and we have equality, as claimed.

(d) False. Let A = {1}, B = {2}, C = {3}, D = {4}. Thenl € AUB,4 € CUD, so
(1,4) € (AUB)x(CUD). But(1,4) ¢ AxCand (1,4) ¢ BxD,so(1,4) ¢ (AxC)U(BxD).

(e) False. Let A = {1,2}, B = {2}, C = {3}, D = {4}. Then, since 3 ¢ D, (2,3) € (Ax C) \
(B x D). However, because 2 € B,2 ¢ AN B,s0(2,3) ¢ (AN B) x (C \ D).
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31. George Boole (1815-1864) was one of the greatest mathematicians of the nineteenth century. He was
the first Professor of Mathematics at University College Cork (then called Queen’s College) and is
best known today as the inventor of a subject called mathematical logic. Indeed he introduced much
of the symbolic language and notation we use today. Like Charles Babbage and Alan Turing, Boole
also had a great impact in computer science, long before the computer was even a dream. He invented
an algebra of logic known as Boolean Algebra, which is used widely today and forms the basis of
much of the internal logic of computers. His books, “The Mathematical Analysis of Logic” and “An
Investigation of the Laws of Thought” form the basis of present-day computer science.

Exercises 2.3

1. [BB] S x B is the set of ordered pairs (s,b), where s is a student and b is a book; thus, S x B
represents all possible pairs of students and books. One sensible example of a binary relation is {(s,b) |
s has used book b}. '

2. A x B is the set of all ordered pairs (a, b) where a is a street and b is a person. One binary relation
would be {(a, b) | b lives on street a}.

3. (a) [BB] not reflexive, not symmetric, not transitive.
(b) (in most cases) reflexive, (in somewhat fewer cases) symmetric, certainly not transitive!
(c) [BB] not reflexive, not symmetric, but it is transitive.
(d) reflexive, symmetric, transitive.

(e) not reflexive, not symmetric, not transitive

4 BBl |a b c d ® |a b c d © J|a b c d
a| X X a| X %X X al| x x X
bl x x b X b
c X c| x X c X X
d X d d X
d |a b c d
a |l x x x X
b X X X
c X
d X X
5. (a)[BB] {(171)’(1’2)7(2a3)}; b) {(l?l)a(2a2)a(373)’(1,2)a(2’3)};
© {(1,2),(2,3),(2,1),(3,2)}; @ {(1,2),(1,3),(2,3) };

@ {(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3:2)};
@ {(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)}; (8) BB] {(1,2),(2,1),(1,1),(2.2)};
® {(1,1),(2,2),(3,3),(1,2),(2,3), (1,3), (2, 1), (3,2), (3, 1)}

6. The answer is yes and the only such binary relations are subsets of the equality binary relation. To see
why, let R be a binary relation on a set A which is both symmetric and antisymmetric. Let (a,b) € R.
Then (b,a) € R by symmetry, so a = b by antisymmetry.
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7. [BB] The argument assumes that for a € R there exists a b such that (a,b) € R. This need not be the
case: See Exercise 5(g).

8. (a) [BB] Reflexive: Every word has at least one letter in common with itself.
Symmetric: If a and b have at least one letter in common, then so do b and a.
Not antisymmetric: (cat, dot) and (dot, cat) are both in the relation but dot # cat!!
Not transitive: (cat, dot) and (dot, mouse) are both in the relation but (cat, mouse) is not.

(b) Reflexive: Let a be a person. If a is not enrolled at Miskatonic University, then (a,a) € R. On
the other hand, if a is enrolled at MU, then a is taking at least one course with himself, so again
(a,a) € R. -

Symmetric: If (a,b) € R, then either it is the case that neither a nor b is enrolled at MU (so
neither is b or a, hence, (b,a) € R) or it is the case that a and b are both enrolled and are taking
at least one course together (in which case b and a are enrolled and taking a common course, so
(b,a) € R). In any case, if (a,b) € R, then (b,a) € R.

Not antisymmetric: If a and b are two different students in the same class at Miskatonic Univer-
sity, then (a,b) € R and (b,a) € R, buta # b.

At most universities, this is not a transitive relation. Let a,b and c be three students enrolled at
MU such that a and b are enrolled in some course together and b and c are enrolled in some (other)

course together, but a and c are taking no courses together. Then (a,b) and (b, c) are in R but
(a,c) ¢ R.

9. (a) Not reflexive: (1,1) ¢ R.

Not symmetric: (1,2) € Rbut (2,1) ¢ R.
Antisymmetric: It is never the case that for two different elements a and b in A we have both
(a,b) and (b,a) in R.
Transitive vacuously; that is, there exists no counterexample to disprove transitivity: The situa-
tion (a,b) € R and (b, c) € R never occurs.

(b) [BB] Not reflexive: (2,2) ¢ R.
Not symmetric: (3,4) € R but (4,3) ¢ R.
Not antisymmetric: (1,2) and (2, 1) are both in R but 1 # 2.
Not transitive: (2, 1) and (1,2) are in R but (2, 2) is not.

(c) [BB] Reflexive: For any a € Z, it is true that a® > 0. Thus, (a,a) € R.
Symmetric: If (a,b) € R, then ab > 0, so ba > 0 and hence, (b,a) € R.
Not antisymmetric: (5,2) € R because 5(2) = 10 > 0 and similarly (2,5) € R, but 5 # 2.
Not transitive: (5,0) € R because 5(0) = 0 > 0 and similarly, (0, —6) € R; however, (5, —6) ¢
R because 5(—6) Z# 0.

(d) Reflexive: For any a € R, a? = a2, 50 (a,a) € R.
Symmetric: If (a,b) € R then a? = b2, so b?> = a? which says that (b,a) € R.
Not antisymmetric: (1,—1) € R and (—1,1) € Rbut 1 # —1.
Transitive: If (a,b) and (b, c) are both in R, then a? = b% and b?> = c?, so a? = c? which says
(a,c) € R.

(e) Reflexive: Forany a € R,a —a =0 < 3 andso (a,a) € R.
Not symmetric: For example, (0,7) € R because 0 — 7 = —7 < 3, but (7,0) ¢ R because
7T—0=7<£3.
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Not antisymmetric: (2,1) € R because2—1=1<3and (1,2) € Rbecause1 —2 = -1 < 3,
but 1 # 2.

Not transitive: (5,3) € R because 5 —3 =2 < 3 and (3,1) € R because 3 — 1 = 2 < 3, but
(5,1) ¢ Rbecause 5 —1 =4 £ 3.

(f) Reflexive: For any (a,b) € A, a — a = b — b; thus, ((a,b), (a,b)) € R.
Symmetric: If ((a, b), (¢, d)) € R, thena—c = b—d, so c—a = d—b and, hence, ((c,d), (a,b)) €
R.

Not antisymmetric: ((5,2), (15,12)) € R because 5—15 = 2—12 and similarly, ((15,12), (5,2)) €
R; however, (15,12) # (5, 2).

If ((a,b),(c,d)) € R and ((¢,d),(e,f)) € Rthena—c =b—dand ¢ — e = d — f. Thus,
a—e=(a—c)+(c—e)=(b-d)+(d— f)=b— fandso ((a,bd), (e, f)) € R.
(g) Not reflexive: If n € N, then n # n is not true.
Symmetric: If n; # no, then ny # n4.
Not antisymmetric: 1 # 2 and 2 # 1 so both (1,2) and (2,1) are in R, yet 1 # 2.
Not transitive: 1 # 2,2 £ 1,butl = 1.

(h) Not reflexive: (2,2) ¢ R because 2 + 2 # 10.
Symmetric: If (z,y) € R, then z + y = 10, 50 y + z = 10, and hence, (y,z) € R.
Not antisymmetric: (6,4) € R because 6 + 4 = 10 and similarly, (4,6) € R, but 6 # 4.
Not transitive: (6,4) € R because 6 + 4 = 10 and similarly, (4,6) € R, but (6,6) ¢ R because
6 + 6 # 10.
(i) [BB] Reflexive: If (z,y) € R%, thenz +y < z + ¥, so ((z,¥), (z,y)) € R.
Not symmetric: ((1,2),(3,4)) € Rsince 1 +2<3+4,but
((3,4),(1,2)) ¢ Rsince3+4 £ 1+2.
Not antisymmetric: ((1,2),(0,3)) € Rsincel +2<0+3
and ((0,3),(1,2)) € Rsince 0+ 3 <1+ 2, but (1,2) # (0, 3).
Transitive: If ((a,b), (c,d)) and ((c, d), (e, f)) are bothin R, then a+b < c+dand c+d < e+ f,
soa+ b < e+ f (by transitivity of <) which says ((a,b), (e, f)) € R.
() Reflexive: 2 =1 € N foranya € N.
Not symmetric: (4,2) € R but (2,4) ¢ R.

Antisymmetric: If 7 = n and % = m are integers then nm = 1 son, m € {£1}. Since a and b
are positive, so are n and m. Therefore,n =m = 1and a = b.

Transitive: The argument given in Example 24 for Z works the same way for N.

(k) Not reflexive: -8 is not defined, let alone an integer!
Not symmetric: As before.
Not antisymmetric: (4, —4) and (—4,4) are both in R.
Transitive: As shown in Example 24.
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10. (a)

(b) The relation is not reflexive because,
for example, (2,2) ¢ R. It is not tran-
sitive because, for example, (2,0) € R

(-2,0) and (0,1) € Rbut (2,1) ¢ R.

(c) The relation is symmetric since if
(z,y) € R, thenl < |z| + |y| < 2,
sol < |yl + |z] < 2,50 (y,7) € R.
It is not antisymmetric since, for exam-
ple, (0,1) € R and (1,0) € R, but
0#1.

11. (a) [BB] Reflexive: For any set X, we have X C X.

Not symmetric: Let a,b € S. Then {a} C {a, b} but {a, b} Z {a}.
Antisymmetric: If X CY andY C X, then X =Y.
Transitive: If X CY andY C Z, then X C Z.

(b) Not reflexive: For no set X is it true that XGX.

Not symmetric: As before. :

Antisymmetric “vacuously”: Itis 1mpos51b1e for X G YandY G X. (Recall that an implication
is false only when the hypothesis is true and the concluswn is false )

Transitive: As before. :

(c) Not reflexive: Since S # 0, there is some element a € S, and so some set X = {a} # 0 € P(S).

For this X, however, X N X = X #0,s0 (X,X) ¢ R.

Symmetric: If (X,Y) € R, then XNY = 0,50 Y N X = 0, hence, (Y, X) € R.

Not antisymmetric: Let a, b be two elements inSandlet X = {a},Y = {b}. Then (X,Y) € R
and (Y, X) e R,but X £Y. .

Not transitive: Let a,b be two elements in S and let X = {a} Y = {b}, Z = {a}. Then
(X,Y)eR,(Y,2) € R, but (X, Z)¢’R

12. (a) [BB] Reflexive: Any book has price > its own prlce and length > its own length, so (a,a) € R

for any book a.

Not symmetric: (Y, Z) € R because the price of Y is greater than the price of Z and the length
of Y is greater than the length of Z, but for these same reasons, (Z,Y) ¢ R.

Antisymmetric: If (a,b) and (b,a) are both in R, then a and b must have the same price and
length. This is not the case here unless a = b.

Transitive: If (a, b) and (b c) are in R, then the price of a is > the price of b and the price of b is
> the price of ¢, so the price of a is > the price of c. Also the length of a is > the length of b and
the length of b is > the length of ¢, so the length of a is > the length of c. Hence, (a,c) € R.

(b) Reflexive: For any book a, the price of a is > the price of a so (a,a) € R. (One could also use a

similar argument concerning length.)

Not symmetric: As in part (a), (Y, Z) € R,but (Z,Y) ¢ R.

Not antisymmetric: (W, X) € R because the price of W is greater than or equal to the price
of X, and (X, W) € R because the length of W is greater than or equal to the length of X, but
W # X.

Not transitive: (Z,U) ¢ 'R because the length of Z is > the length of U and (U, Y’) € R because
the price of U is > the price of Y, but (Z,Y’) ¢ R because neither is the price of Z > the price of
Y nor is the length of Z > the length of Y.



40 : Solutions to Exercises

13. Now the second binary relation would have an extra term, {Mike, 120}, and the third would have the
extra term, {Pippy Park, 120}. But, in addition, the entry {Pippy Park, 74} would be deleted. So Mike
is now clearly identified as the one who shot 120, and Pippy Park is where that occurred. Hence,
Mike’s round of 74 was at Clovelly. Since Edgar has only one entry in binary relation two, he must
have shot 72 at both courses. Finally, Bruce’s 74 must have been at Clovelly and hence his 72 was at
Pippy Park. All information has been retrieved in this case.

Exercises 2.4

1. Reflexive: For any citizen a of New York City, either a does not own a cell phone (in which case
a ~ a) or a has a cell phone and a’s exchange is the same as a’s exchange (in which case againa ~ a).

Symmetric: If @ ~ b and a does not have a cell phone, then neither does b, so b ~ a; on the other
hand, if a does have a cell phone, then so does b and their exchanges are the same, so again, b ~ a.

Transitive: Suppose a ~ band b ~ c. If a does not have a cell phone, then neither does b and, since
b ~ c, neither does ¢, so a ~ c. On the other hand, if a does have a cell phone then so does b and
a’s and b’s exchanges are the same. Since b ~ c, ¢ has a cell phone with the same exchange as b. It
follows that a and c have the same exchange and so, in this case as well, a ~ c.

There is one equivalence class consisting of all residents of New York who do not own a cell phone
and one equivalence class for each New York City exchange consisting of all residents who have cell
phones in that exchange.

2. (a) [BB] This is not reflexive: (2,2) ¢ R.
(b) This is not symmetric: (2,3) € R but (3,2) ¢ R.
It would also be acceptable to not that R is not transitive. (3,1) € R and (1,2) € R, but
(3,2) ¢ R.
(¢) This is not symmetric: (1, 3) is in the relation but (3, 1) is not.
It would also be acceptable to note that this relation is not transitive: (2,1) € R, (1,3) € R, but
(2,3) ¢ R.
3. [BB] Equality! The equivalence classes specify that z ~ y if and only if z = y.

4. (a) Reflexive: If a € S, then a and a have the same number of elements, so a ~ a.

Symmetric: If a ~ b, then a and b have the same number of elements, so b and a have the same
number of elements. Thus b ~ a.

Transitive: If a ~ b and b ~ c, then a and b have the same number of elements, and b and c have
the same number of elements, so a and ¢ have the same number of elements. Thus a ~ c.

(b) There are seven equivalence classes, represented by 0, {1}, {1,2}, {1,2,3}, {1,2,3, 4},{1,2,3,4,5},
{1,2,3,4,5,6}.

5. (a) [BB] Reflexive: If a € R\ {0}, then a ~ a because & =1 € Q.
Symmetric: If a ~ b, then ¢ € Q and this fraction is not zero (because 0 ¢ A). So it can be
inverted and we see that % =1/ % € Q too. Therefore, b ~ a.
Transitive: If a ~ band b ~ ¢, then § € Q and % € Q. Since the product of rational numbers is

rational, £ = %% isinQ,soa ~c.
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®) BBI1={ala~1}={a|§€Q}={alacQ}=Q~{0}
© [BB]%=%=2€Q,sox/§~\/l_2andhence%=\/_l_2.

6. Reflexive: Forany a € N, a ~ a since a? +a = a(a+ 1) is even, as the product of consecutive natural
numbers.
Symmetric: If a ~ b, then a® + b is even. It follows that either a and b are both even or both are odd.
If they are both even, b2 + a is the sum of even numbers, hence, even. If they are both odd, b2 + a is
the sum of odd numbers and, hence, again, even. In both cases b2 + a is even, so b ~ a.
Transitive: If a ~ b and b ~ c, then a® + b and b? + c are even, so (a? + b) + (b + c) is even; in
other words, (a2 + c) + (b + b) is even. Since b? + b is even, a? + c is even too; therefore, a ~ c.

The quotient set is the set of equivalence classes. Now

evens if a is even

—__ 2 . —
@={z|2"+aiseven} {odds if a is odd

So A/~={2Z,2Z + 1}.

7. (a) [BB] Reflexive: For any a € R, a ~ a becausea —a =0 € Z.
Symmetric: If a ~ b,thena—b € Z,sob—a € Z (because b —a = —(a — b)) and, hence, b ~ a.
Transitive: If a ~ b and b ~ c, then both a — b and b — c are integers; hence, so is their sum,
(@a—b)+(b—c)=a—c. Thus,a ~c.
(b) [BB] The equivalence class of 5is5 = {z € R | z ~ 5} = {z | z — 5 € Z} = Z, because
z —5 € Zimplies x € Z. .

5 {zeR|z~51}

{z|z-5% €2}

{z |z =53 +k, forsome k € Z}
{z|z=5+k+ 3, forsomek € Z}

= {z|z=n+3, forsomen € Z}

=
ol

(c) [BB]Foreacha € R,0 < a < 1, there is one equivalence class,
@ = {z € R| z = a + n for some integer n}.
The quotient setis {@ | 0 < a < 1}.

8. [BB] Reflexive: For any a € Z, a ~ a because 2a + 3a = 5a.
Symmetric: If a ~ b, then 2a + 3b = 5n for some integer n. So 2b + 3a = (5a + 5b) — (2a + 3b) =
5(a+ b) — 5n = 5(a + b — n). Since a + b — n is an integer, b ~ a.
Transitive: If a ~ band b ~ ¢, then 2a + 3b = 5n and 2b+ 3¢ = 5m for integers n and m. Therefore,
(2a+ 3b) + (2b+ 3c) = 5(n +m) and 2a + 3¢ = 5(n +m) — 5b = 5(n+m —b). Sincen+m — b
is an integer, a ~ c.

9. (a) Reflexive: For any a € Z, 3a + a = 4a is a multiple of 4, so a ~ a.
Symmetric: If a ~ b, then 3a + b = 4k for some integer k. Since (3a+b) + (3b+a) = 4(a+b),
we see that 3b + a = 4(a + b) — 4k is a multiple of 4, so b ~ a.
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Transitive: If a ~ b and b ~ ¢, then 3a + b = 4k for some integer k and 3b + ¢ = 4¢ for some
integer £. Since 4(k+£) = (3a+b) + (3b+c) = (3a+c) +4b, we see that 3a+c = 4(k+£) —4b
is a multiple of 4 and, hence, thata ~ c.

() 0={z € Z|z ~ 0} ={z | 3z = 4k for some integer k}. Now if 3z = 4k, k must be a multiple
of 3. So 3z = 12¢ forsome £ € Z and z = 4£. 0 = 4Z.

©2={reZ|z~2} ={z|3z+2 = 4kforsomeintegerk} = {z | 3z = 4k —
2 for some integer k} Now if 3z = 4k — 2, then 3z = 3k + k — 2 and so k — 2 is a multiple
of 3. Therefore, k = 3¢ + 2 for some integer £, 3z = 4(3{ +2) —2 =12{ + 6 and z = 4£ + 2.
So02=4Z+2.

(d) The quotient set is {4Z,4Z + 1,4Z + 2,4Z + 3}.

(a) Reflexive: For any a € Z, a ~ a because 3a + 4a = 7a and a is an integer.
Symmetric: If a,b € Z and a ~ b, then 3a + 4b = 7n for some integer n. Then 3b + 4a =
(7Ta+7b) — (3a +4b) =7a+ Tb— Tn =T(a + b —n) and a + b — n is an integer. Thus b ~ a.
Transitive: Suppose a,b,c € Zwitha ~ band b ~ c. Then 3a + 4b = Tn and 3b + 4c = Tm
for some integers n and m. Then 7n + 7Tm = (3a + 4b) + (3b + 4c) = (3a + 4c) + 7b, so
3a+4c=Tn+Tm—Tb="T7(n+m —b) and n + m — b is an integer. Thus a ~ c.

® 0={z€Z|x~0}={ze€Z|3x="Tnforsome integer n}. Now if 3z = 7n, n must be a
multiple of 3. So 3z = 21k for some k € Z and x = 7k. We conclude that 0 = 7Z.

(a) [BB] Reflexive: If a € Z \ {0}, then aa = a® > 0,s0a ~ a.
Symmetric: If a ~ b, thenab > 0. So ba > 0 and b ~ a.
Transitive: If a ~ band b ~ c, then ab > 0 and bc > 0. Also b2 > 0 since b # 0. Hence,

e = (aggb2 _ (abngc) >0

since ab > 0, bc > 0. Hence, a ~ c. ‘
b BB] 5 = {z€Z~{0}|z~5}={z|52>0}={z|z>0}

-5 = {z€Z~\{0}|z~-5}={z|-5z>0}={z|z <0}
(c) [BB] This equivalence relation partitions Z \ {0} into the positive and the negative integers.

(a) [BB] Reflexive: For any a € Z, a? — a? = 0 is divisible by 3, so a ~ a.
Symmetric: If a ~ b, then a? — b? is divisible by 3, so b? — a? is divisible by 3, s0 b ~ a.
Transitive: If a ~ b and b ~ c, then a® — b? is divisible by 3 and b?> — c? is divisible by 3, so
a? — ¢ = (a% — b?) + (b? — c?) is divisible by 3.

® 0 = {reZ|z~0}
= {z € Z| 2? is divisible by 3}
= {z €Z|zisdivisibleby 3} =3Z
{reZ|z~1}

|
I

{z | z? — 1 s divisible by 3}

{z | (x — 1)(z + 1) is divisible by 3}
{z | £ — 1 or z + 1 is divisible by 3}
3Z+1U3Z+2

(c) This equivalence relation partitions the integers into the two disjoint sets 3Z and (3Z+1)U(3Z+
2).



Section 2.4 43

13.

14.

15.

(a) [BB] Yes, this is an equivalence relation.
Reflexive: Note that if a is any triangle, a ~ a because a is congruent to itself.

Symmetric: Assume @ ~ b. Then a and b are congruent. Therefore, b and a are congruent, so
b~ a.

Transitive: If a ~ b and b ~ c, then a and b are congruent and b and c are congruent, so a and ¢
are congruent. Thus, a ~ c.
(b) Yes, this is an equivalence relation.
Reflexive: If a is a circle, then a ~ a because a has the same center as itself.

Symmetric: Assume a ~ b. Then a and b have the same center. Thus, b and a have the same
center, so b ~ a.

Transitive: Assume a ~ b and b ~ c¢. Then q and b have the same center and b and c have the
same center, so a and ¢ have the same center. Thus, a ~ c.
(c) Yes, this is an equivalence relation.
Reflexive: If a is a line, then a is parallel to itself, so a ~ a.
Symmetric: If a ~ b, then a is parallel to b. Thus, b is parallel to a. Hence, b ~ a.
Transitive: If a ~ b and b ~ c, then a is parallel to b and b is parallel to c, so a is parallel to c.
Thus, a ~ c.

(d) No, this is not an equivalence relation. The reflexive property does not hold because no line is
perpendicular to itself. Neither is this relation transitive; if £, is perpendicular to £, and ¢5 is
perpendicular to £3, then ¢; and £3 are parallel, not perpendicular to one another.

(a) [BB]R = {(1,1),(1,2),(2,1),(2,2),(3,3),(3,4), (3,5),(4,4), (4,5), (5,5), (4,3), (5,3),
(574)} '

®) R ={((1,1),(2,2),(3,3),(3,4), (4,3),(4,4),(5,5)}

c) R=1{(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2), (2,3),(2,4), (2,5),(3,1),(3,2), (3, 3),
(3,4),(3,5),(4,1),(4,2),(4,3), (4,4), (4,5), (5,1),(5,2), (5,3),(5,4), (5,5)}

(a) As suggested in the text, we list the partitions of {a}. There is only one; namely, {a}.

(b) As suggested in the text, we list the partitiohs of {a,b}. There are two; namely, {a,b} and
{a}, {b}. '

(c) [BB] As suggested in the text, a good way to list the equivalence relations on {a, b, c} is to list the
partitions of this set. Here they are:

{{a}, {6}, {c} };
{{a,b,c} };
{{a,b},{c} }: {{a,c}, {8} 1 { {b,}, {a} }
There are five in all.
(d) As suggested in the text, we list the partitions of {a,b,c,d}.
{{a}, {0}, {c},{d} }
{{a,b,c,d} }
{{a,b},{c,d} }; { {a,c}, {b,d} }; { {a,d}, {b,c} }
{{a,b}, {c}. {d} }; { {a,c}, {0}, {d} }; { {a,d}, {b}, {c} }; { {b,c}, {a}, {d} };
{ {b,d},{a},{c} }; { {c,d},{a},{b} }
{{a,b,c},{d} }; {{a,b,d},{c} }; { {a,c,d},{b} }; { {b,c,d},{a} }

There are 15 in all. ‘
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16.

17.

18.
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(a) [BB] The given statement is an implication which concludes “x — y = z — y,” whereas what is
required is a logical argument which concludes “so ~ is reflexive.”

A correct argument is this: For any (z,y) € R?, £ — y = = — y; thus, (z,y) ~ (z,y). Therefore,
~ is reflexive.

(b) There is confusion between the elements of a binary relation on a set A (which are ordered pairs)
and the elements of A which are themselves ordered pairs in this situation. The given statement
is correct provided each of x and y is understood to be an ordered pair of real numbers, and we
understand R = {(z,y) | z ~ y} but this is very misleading. Much better is to state symmetry
like this:

if (z,y) ~ (u,v), then (u,v) ~ (z,y).

(c) The first statement asserts the implication “z —y = v — v — (z,y) ~ (u,v)” which is the
converse of what should have been said. Here is the correct argument:

If (z,y) ~ (u,v), thenz — y = u — v, sou — v = = — y and, hence, (u,v) ~ (z,).

(d) This suggested answer is utterly confusing. Logical arguments consist of a sequence of implica-
tions but here it is not clear where these implications start. Certainly the first sentence is not an
implication.

If (z,y) ~ (u,v) and (u,v) ~ (w,2) thenz —y =u—vandu —v = w— 2z So
T —y = w — z and, hence, (z,y) ~ (w, 2).

(e) ~ defines an equivalence relation on R? because it is a reflexive, symmetric and transitive binary
relation on R2,

(f) The equivalence class of (0, 0) is

{(@,9) | (z,9) ~ (0,0} ={(z,9) |z -y =0 -0} = {(z,9) | y = 2}

which is a straight line of slope 1 in the Cartesian plane passing through the origin. The equiva-
lence class of (2, 3) is

{z9) | (@y) ~(2,3)}={(zy) |z-y=2-3=-1}={(z,y) |[y=z+1}
which is a straight line of slope 1 passing through the point (2, 3).

[BB] Reflexive: If (z,y) € R?, then 22 — y? = 22 — 2, 50 (z,y) ~ (=, ¥).
Symmetric: If (z,y) ~ (u,v), then 22 — 32 = u? — v?, so u? — v2 = 22 — y? and (u,v) ~ (z,y).

Transitive: If (z,y) ~ (u,v) and (u,v) ~ (w, 2), then 2 — y? = u? — v? and u? — v? = w? — 22,

sox? —y? =u? —v? =w? - 2% 2% — % = w? — 2% and (z,9) ~ (w, 2).

(0’_0)= {(xay) I ((E,y) ~ (0’0)} ={(x,y) | :1:2—y2 =0%2-0° =0} = {(x)y) l y=:l:$}

Thus, the equivalence class of (0, 0) is the pair of lines with equations y = z, y = —=z.

1,0) = {(z,9) | (z,9) ~ (1,0)} = {(z,9) | 2 — 4> =1* - 0* =1}
Thus, the equivalence class of (1, 0) is the hyperbola whose equation is 22 — y? = 1.

(a) This is an equivalence relation.
Reflexive: If (a,b) € R?, then a + 2b = a + 2b, so (a,b) ~ (a,b).
Symmetric: If (a,b) ~ (c,d), thena + 2b = c+ 2d, so ¢ + 2d = a + 2b and (¢, d) ~ (a, b).
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Transitive: If (a,b) ~ (c,d) and (¢,d) ~ (e, f), thena + 2b = ¢ + 2d and ¢ + 2d = e + 2f, so
a+2b=e+2f and (a,b) ~ (e, f).

The quotient set is the set of equivalence classes. We have

(a',b) = {(xay) l (:v,y) ~ (a?b)} = {(x)y) | z+2y= a+2b}
={(z,9) |y—b=—3(z—a)}

which describes the line through (a, b) with slope —%. The quotient set is the set of lines with

slope —%.

(b) This is an equivalence relation.
Reflexive: If (a,b) € R?, then ab = ab, so (a, b) ~ (a,b).
Symmetric: If (a,b) ~ (c,d), then ab = cd so cd = ab and (¢, d) ~ (a,b).
Transitive: If (a,b) ~ (¢,d) and (¢,d) ~ (e, f), then ab = cd and cd = ef, so ab = cd = ef,
ab = ef and (a,b) ~ (e, f).
The quotient set is the set of equivalence classes. We have

(a,0) = {(z,9) | (z,) ~ (a,0)} = {(z,) | =y = ab}

and consider two cases. If either a = 0 or b = 0, then (a,b) = {(z,y) | zy = 0}; that is,

{(z,y) | ¢ = 0 ory = 0}. Hence, (a, b) is the union of the x-axis and the y-axis. On the other
hand, if a # 0 and b # 0, then

@h) = {(@9) | 2y = ab} = {(=.9) |y = 2}

since z # 0 in this case. This time, (a, b) is the hyperbola whose equation is y = ab/z.

(c) This is not an equivalence relation. We have (0,2) ~ (1,1) because 02 + 2 = 2 = 1 + 1%
however, (1,1) # (0,2) because 12 + 1 = 2 # 4 = 0 + 22, The relation is not symmetric.

(d) Reflexive: For any (a,b) € R%, a = a, so (a,b) ~ (a,b).
Symmetric: If (a,b) ~ (c, d), then a = ¢, so ¢ = a and, hence, (c,d) ~ (a,b).
Transitive: If (a,b) ~ (c,d) and (c,d) ~ (e, f), then a = c and ¢ = e; hence, a = e and so
(a”b) ~ (e, f) .
Since the relation is reflexive, symmetric and transitive, it is an equivalence relation. The quotient
set is the set of equivalence classes. The equivalence class of (a, b) is

{(z,9) €R? | (z,9) ~ (a,0)} = {(z,y) €R?* |z =a}.
Geometrically, this set is the vertical line with equation z = a. The quotient set is the set of
vertical lines.
(e) This is not an equivalence relation. For example, it is not reflexive: (1,2) »# (1,2) because
12)=2#1=12
19. (a) “If@aNb=0,thena #b.”
(b) The converse is true. faNd = 0, thena € abuta ¢ b,soa #* b.

20. Remembering that Z is just the set of elements equivalent to z, we are given thata ~ b, ¢ ~ d and
d ~ b. By Proposition 2.4.3,a =b,c=dandd=b. Thusa=b=d =¢C.
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21.

22.

23.

24.

25.

Solutions to Exercises

(a) [BB] The ordered pairs defined by ~ are (1,1), (1,4), (1,9), (2,2), (2,8), (3,3), (4,1), (4,4),
(4,9), (5,5), (6,6), (7,7), (8,2), (8,8), (9,1), (9,4), (9,9).

() [BB1T={1,4,9}=4=9;2={2,8} =8;3={3};5={5};6 ={6}; 7= {7}

(c) [BB] Since the sets {1,4,9}, {2,8}, {3}, {6}, {6} and {7} partition A, they determine an equiv-
alence relation, namely, that equivalence relation in which a@ ~ b if and only if a and b belong to
the same one of these sets. This is the given relation.

[BB] Reflexive: If a € A, then a? is a perfect square, so a ~ a.
Symmetric: If a ~ b, then ab is a perfect square. Since ba = ab, ba is also a perfect square, so b ~ a.

Transitive: If a ~ b and b ~ c, then ab and bc are each perfect squares. Thus ab = z2 and bc = y?
oy ( zy

2
for integers = and y. Now ab®c = z2y?, so ac = = =3 ) . Because ac is an integer, so also

Ty . .
Ty is an integer. Therefore, a ~ c.

(a) The order pairs of ~ are (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), (1,2), (2,1), (1,4),
(4,1), (2,4), (4,2), (3,6), (6,3).

®) 1={1,2,4}=2=4,3={3,6}=6;5={5}; 7={7}.
(c) Thesets {1,2,4}, {3,6}, {5}, {7} partition A, so the given relation is an equivalence relation.

Reflexive: If a € A, then g =1=2%isapowerof 2,s0a ~ a.

b
Symmetric: If a ~ b, then % = 2t so g = 2%, Since —t is an integer, - is also a power of 2, so
b~ a.

e a : b . a ab o+
Transitive: If a ~ b and b ~ ¢, then 3 = 2% and E'= 24 for integers t and s. Thus p = 3o EAREN
showing that a ~ c. '

We have to prove that the given sets are disjoint and have union S. For the latter, we note that since
R is reflexive, for any a € S, (a,a) € R and so a and a are elements of the same set S;; that is,
a € S; for some i. To prove that the sets are disjoint, suppose there is some z € Sk N S,. Since
Sk € Ujzx Sj» there exists y € Sk such that y ¢ S; for any j # k. Similarly, there exists z € S,
such that z ¢ S; if j # £. Now if y,z € Sk, then (y,z) € R and z, z € S, implies (z,2) € R. By
transitivity, (y, z) € R, hence, y and z belong to the same set. But the only set to which y belongs is
Sk. Since z does not belong to Sy, we have a contradiction: No x € S NS¢ exists.

Exercises 2.5

1.

(a) [BB] This defines a partial order.
Reflexive: For any a € R, a > a.
Antisymmetric: If a,b € R,a > band b > a,thena = b.
Transitive: If a,b,c € R,a > band b > c, thena > c.
This partial order is a total order because for any a,b € R, eithera > borb > a.
(b) [BB] This is not a partial order because the relation is not reflexive; for example, 1 < 1 is not true.
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(c) This is not a partial order because the relation is not antisymmetric; for example, —3 < 3 because
(—3)% < 32 and 3 < —3 because 32 < (—3)2 but —3 # 3.

(d) This is not a partial order because the relation is not antisymmetric; for example, (1,4) =< (1,8)
because 1 < 1 and similarly, (1,8) < (1,4), but (1,4) # (1,8).

(e) This is a partial order.
Reflexive: For any (a,b) € N x N, (a,b) <X (a,b) because a < a and b > b.

Antisymmetric: If (a,b), (c,d) € N x N, (a,b) <X (¢,d) and (c,d) < (a,b), thena < ¢, b > d,
c<aandd >b. Soa = ¢, b=d and, hence, (a,b) = (c,d).

Transitive: If (a,b), (c,d), (e, f) € N x N, (a,b) =< (c,d) and (¢,d) < (e, f), thena < ¢, b > d,
c<eandd > f.Soa < e(because a < c < e) and b > f (because b > d > f) and, therefore,
(a,b) < (e, f)

This is not a total order; for example, (1,4) and (2, 5) are incomparable.
(f) This is reflexive and transitive but not antisymmetric and, hence, not a partial order. For example,
cat = dog and dog = cat but dog # cat.
2. (a) [BB] 1, 10, 100, 1000, 1001, 101, 1010, 11, 110, 111
(b) 1,11, 111, 110, 10, 101, 1010, 100, 1001, 1000
3. (@I[BB] (a,b),(a,c),(a,d), (b,¢), (b,d),(c,d);  (b) [BB] (a,b), (c,d);
© (a,b),(a,d),(c,d); @ (a,b),(a,c), (a,d);

) (a, d)1 (a7 6), (b’ e)’ (ba C), (b7 f)’ (09 f)1 (d’ e);
® (a, f),(d,¢),(d,b),(d,c), (d, h), (d, 1), (e,c), (e, i), (9, f), (h, ).

4. (a) [BB] a is minimal and minimum; d is maximal and maximum.
(b) [BB] a and c are minimal; b and d are maximal; there are no minimum nor maximum elements.
(c) a and c are minimal; b and d are maximal; there are no minimum nor maximum elements.
(d) a is minimal and minimum; b, ¢ and d and maximal; there is no maximum element.
(e) a and b are minimal; e and f and maximal; there are no minimum nor maximum elements.

(f) a, d, e and g are minimal; ¢, f and i are maximal; there are no minimum nor maximum elements.

5. (a) ® {a,b,c,d}
{a" ba C} q

{a’ b} [0} {aa C} {C, d}

- N W e Ut

{a}
6. (a) 1is minimal and minimum; 6 is maximal and maximum.

(b) {a} and {c, d} are minimal; there is no minimum.
The set {a, b, ¢, d} is maximal and maximum.

7. [BB] A g B and the set B contains exactly one more element than A.
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8. Helmut Hasse (1898—1979) was one of the more important mathematicians of the twentieth century.
He grew up in Berlin and was a member of Germany’s navy during the first World War. He received
his PhD from the University of Géttingen in 1921 for a thesis in number theory, which was to be the
subject of his life’s work. He is known for his research with Richard Brauer and Emmy Noether on
simple algebras, his proof of the Riemann Hypothesis (one of today’s most famous open problems)
for zeta functions on elliptic curves, and his work on the arithmetical properties of abelian number
fields. Hasse’s career started at Kiel and continued at Halle and Marburg. When the Nazis came
to power in 1933, all Jewish mathematicians, including eighteen at the University of Gottingen, were
summarily dismissed from their jobs. It is hard to know the degree of ambivalence Hasse may have had
when he received an offer of employment at Géttingen around this time, but he accepted the position.
While some of Hasse’s closest research collaborators were Jewish, he nonetheless made no secret of
his support for Hitler’s policies. In 1945, he was dismissed by the British, lost his right to teach and
eventually moved to Berlin. In May 1949, he was appointed professor at the Humboldt University in
East Berlin but he moved to Hamburg the next year and worked there until his retirement in 1966.

9. (a) [BB]Let (A, <) be a finite poset and let a € A. If a is not maximal, there is an element a; such
that a; > a. If a; is not maximal, there is an element a5 such that a; > a;. Continue. Since A
is finite, eventually this process must stop, and it stops at a maximal element. A similar argument
shows that (A, <) must also contain minimal elements.

(b) The result of (a) is not true in general. For example, (R, <) is a poset without maximal elements
and without minimal elements.

10. (a) Reflexive: For any a = (a1,a2) € A, a < a because a; < a; and a; + a2 < a1 + as.

Antisymmetric: If a = (aj,a2) and b = (b1,b2) are in A witha < band b < a, then a; < by,
a1 + az < by + by, and by < ay, by + by < a; + ap. Since a; < by and b; < a;, we have
a1 = by. Since a1 + az < by + be and a; = by, we have as < bs. Similarly, by < ag, so
as = bz. Thus a = b.

Transitive: If a = (a;,a2), b = (b1,b2) and ¢ = (c1,¢2) are elements of A with a < b and
b=<c,thena; <b;,a; +as < by +bg,and also by < cq, by + by < ¢y + co. Since a; < by
and b; < ¢1, we have a; < ¢;. Since a; + az < by + by and by + ba < ¢ + cg, we have
ai1+az2<c;+cy,s0a=xc -

This partial order is not a total order: for example, a = (0,0) and b = (—1, —2) are not compara-

ble.

(b) Let A =Z" and fora = (a1,a2,...,a,) and b = (b, b, ..., b,) in A, define a < b if and only

ifa; <b1,a1+az <by+by,a1+az+ag < by +by+bs, a1 +az+as+ag < by +by+bs+by,
..,a1+azx+--+ap <by+by+:--+ b,. Then < is a partial order on A.

11. (a) [BB] Suppose that a and b are two maximum elements in a poset (A4, <). Then a < b because b is
maximum and b < a because ¢ is maximum, so a = b by antisymmetry.

(b) Suppose that a and b are two minimum elements in a poset (A4, <). Then a < b because a is
minimum and b < a because b is minimum, so a = b by antisymmetry.

12. (a) [BB] Assuming it exists, the greatest lower bound G of A and B has two properties:
(I GCAGCB;
2) ifCCAandC C B,thenC CG.
We must prove that A N B has these properties. Note first that AN B C Aand AN B C B, so
A N B satisfies (1). Also,if C C Aand C C B, then C C AN B, so AN B satisfies (2) and
ANB=AAB.
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(b) Assuming it exists, the least upper bound of A and B has two properties:
(1) ACLBCL
2 ifACCandBCC,thenL CC.
We must prove that AU B has these properties. Since A C AUBand B C AUB, AU B satisfies
(1). Also,if ACCand BC C,then AUB C C, so AU B satisfies (2) and AUB = AV B.

13. (a) [BB]la V b = b and here is why. We are given a <X b and have b =< b by reflexivity. Thus b is an
upper bound for a and b. It is least because if ¢ is any other upper bound, then a < ¢, b=cin
particular, b < c.

(b) a A b = a and here is why. We are given a < band have a X a by reflexivity. Thus a is a lower
bound for a and b. It is greatest because if ¢ is any other lower bound, then ¢ = a, ¢ X b; in
particular, ¢ < a.

14. (a) [BB] Suppose x and y are each glbs of two elements a and b. Thenz < a,z X bimpliesz Xy
because y is a greatest lower bound, and y < a, y < b implies y <X z because x is greatest. So,
by antisymmetry, T = y.

(b) Suppose z and y are each lubs of two elements a and b. Thena X z, b < z implies y <X z because
y is a least upper bound, and a < y, b < y implies x < y because z is least. So, by antisymmetry,
x=y.

15. (a) In a totally ordered set, every two elements are comparable. So given a and b, either a < b or
b < a; hence, the elements max(a, b) and min(a, b) always exist. In a poset which is not totally
ordered, they don’t necessarily, however. In the two element poset {a}, {b} with the relation C,
for example, max({a}, {b}) does not exist because there is no element in the poset containing
both {a} and {b}. (Similarly, min({a}, {b}) does not exist.)

(b) To prove that a totally ordered set (A, <) is a lattice we must prove that every pair of elements has
a glb and lub. We claim that glb(a, b) = min(a, b) and lub(a, b) = max(a, ).
We show that glb(a, b) = min(a,b). (The argument to show that lub(a,b) = max(a,b) is very
similar.) Let m = min(a, b). (Note that m = a or m = b). Certainly we havem <X aand m X b
so m is a lower bound. Also, if for some element c we have ¢ < a and ¢ < b, then ¢ X m if
m = a, and ¢ < m if m = b. In either case, we have ¢ < m, so glb(a, b) is min(a, b) as required.

16. (a) [BB] (P(S), C) is not totally ordered provided |S| > 2 (since {a} and {b} are not comparable if
a # b). But () is a minimum because @ is a subset of any set and the set S itself is a maximum
because any of its subsets is contained in it.

(b) (Z,<) or (R, <) are obvious examples.
17. Suppose a is maximal in a totally ordered set (A, <) and let b be any other element of A. Since A is

totally ordered, either a < b or b < a. In the first case, a = b because a is maximal so in either case,
b < a. Thus, a is a maximum. ’

18. (a) [BB] We have to prove that if b < a, then b = a. So suppose b <X a. Since a is minimum, we have
also a < b. By antisymmetry, b = a.

(b) Let b be a minimal element. We claim b = a. To see why, note that a minimum implies a =X b.
Then minimality of b says a = b.
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Solutions to Review Exercises

Chapter 2 Review

1.

Since A ={1,2,3,4,5,6} and B = {3,4,5,6,7}, wehave A® B = {1,2,7} and (A® B)\ C =
{1,7}.

. @ A={-1,0,1,2}, B={-5,-3,-1,1},C = {-%,-2,0,+1,42,+},+1};

(b) ANB= {:l:l}’ S0 (A n B) X B = {(1! '—5)7 (la —3), (la —1)’ (la 1)1 (_lv _5)’ (_]-a _3)’
('—11 "‘1)1 (_1, 1)},
(¢) BNC = {-5,-3}); D AeC={-2-2-2,+1,+1}.

(a) True. (—) Suppose ANB =Aandleta € A. Thena € AN B,soa € B. Thus A C B.
(«—) Suppose A C B. To prove AN B = A, we prove each of the two sets, AN B and 4, is a
subset of the other. Let x € AN B. By definition of N, z is in both A and B, in particular, z € A.
Thus AN B C A. Conversely, let z € A. Since A C B, x € B. Since z is in both A and B,
re ANB. Thus AC AN B.

(b) This is false. If A =0, (AN B)UC = C while AN (BUC) = 0, soany C # 0, any B, and
A = ( provides a counterexample.

(c) False. Take A = B = 0.

. Letb € B and let a be any element of A. Then (a,b) € A x B, so (a,b) € A x C. Thus b € C. This

shows tht B C C and a similar argument shows C C B, so B = C.

. (@ Region2: (ANC)\B Region3: ANBNC Region4: (ANB)\ C

Region5: (BNC)N\ A Region6: B\ (AUC) Region7: C \ (AU B)
(b) Region 2,3,4,5,7is (AN B)UC;region2,3,4is AN (BUC)
(¢) B\ (C \ A) consists of regions 3, 4, and 6. (B \ C) \ A consists of region 6.
C

. (@
A B

®) i (AUB)NC ={2,3,8,9}
ii. AN(BNC)={2,3,7,9}

iii. A® B ={2,6,7,8,9}
iv. (AN B) x (BNC) ={(2,3),(2,8),(7,3),(7,8),(9,3),(9,8)}

P(A) = {m’ A}’ so P(P(A)) = {@, {m}v {A}v {@7 A}}

() TakeA=B=C’={3};ThenB\C=(?)sera(B\C)=A. On the other hand, A® B = ()
so (A®B)~C =0 # A.

(b) Let (a,b) € Ax B. Thena € Aand b € B. SinceaeAandAQC,aeC’. Since b € B and
BCD,be D.So(a,b) eCxD.Hence AXx BCC x D.

Take B=C=0,A={1}=D.ThenAx B=0=C x D,s0 Ax B C C x D. On the other
hand, A Z C.
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10. This follows quickly from one of the laws of De Morgan and the identity X \Y = X NY*“.

11.

12.

13.

14.

15.

16.

AN(BNC)=AN(BNC)=AN(B°UC®) i (ANB°)U(ANC%) =(ANB)U(ANDQ),
using (3), p. 62 at the spot marked with the arrow.

(a) A binary relation on A is a subset of A x A.
(b) If A has 10 elements, A X A has 100 elements, so there are 210 binary relations on A.

Reflexive: For any a with |a| < 1, we have a? = |a?| = |a]|a| < |a|, thus (a,a) € R.
Symmetric by definition.
Not antisymmetric because (3, 7)isin R ((3)2 < 3 and ()2 < 3) but 1 # 7.
Not transitive. We have (3,3) € R because (3)2 < 1 and (3)? < } and (},1) € R because
(3)2 < tand($)? < 3, but(3,2)isnotin R because (3)2 £ 1.
(a) Reflexive: For any natural number a, we have a < 2a, so a ~ a.
Not symmetric: 2 ~ 5 because 2 < 2(5), but 5 %% 2 because 5 £ 2(2).
Not antisymmetric: Let a = 1 and b = 2. Then a ~ b because 1 < 2(2) and also b ~ a because
2 <2(1). .
Not transitive: Leta = 3, b = 2, ¢ = 1. Then a ~ b because 3 < 2(2) and b ~ ¢ because
2 < 2(1). However, a o ¢ because 3 £ 2(1).
Since the relation is not transitive, it is not an equivalence relation and it is not a partial order.
(b) Not reflexive: (1,2) + (1,2) because 1 <2and 2 £ 1.
Not symmetric: (1,2) ~ (4, 3) because 1 < 2 and 3 < 4, but (4, 3) # (1,2) because 4 £ 3.

Not antisymmetric: (1,1) ~ (2,2) because 1 < 1 and 2 < 2, and (2,2) ~ (1,1) for the same
reason, but (1,1) # (2,2). ‘

Transitive: if (a,b) ~ (c,d) and (¢,d) ~ (e, f),thena < b,d < c,c< dand f < e, s0a<b
and f < e which implies (a, b) ~ (e, f).

This is not an equivalence relation because it’s not reflexive (or symmetric).

This is not a partial order because it’s not reflexive (or antisymmetric).

‘We must determine whether or not ¢ < b and b < a implies ¢ = b. Since the hypothesis is always
false, this implication is true. The relation is antisymmetric.

Reflexive: For any a € Z, 4a + a = 5a is a multiple of 5.

Symmetric: If aRb, then 4a + b is a multiple of 5, so 4b + a = 5(a + b) — (4a + b) is also a multiple
of 5, that is, bRa.

Transitive: If aRb and bRc, then both 4a + b and 4b + ¢ are multiples of 5, hence so is their sum,
4a + 5b + c. It follows that (4a + 5b + c) — 5b = 4a + cis also a multiple of 5, so aRc.

(a) Reflexive: For any a € Z, aRa because 2a + 5a = 7a is a multiple of 7.
Symmetric: If a,b € Z and aRb, then 2a + 5b = Tk for some integer k, so 5a +2b = 7(a+b) —
(2a + 5b) is the difference of multiples of 7, hence also a multiple of 7. Thus bRa.
Transitive: If a,b,c € Z with aRb and bRc, then 2a + 5b = 7k for some integer k and 2b +
5c = T¢ for some integer £. Thus (2a + 5b) + (2b + 5¢) = 2a + 7b + 5¢ = 7(k + £) and
2a + 5¢ = 7(k + £) — b is the difference of multiples of 7, hence a multiple of 7. Thus aRc.
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17.

18.

19.

20.

21.

22,

Solutions to Review Exercises

(b) We have OR7 and 7RO, yet 0 # 7. The relation is not antisymmetric, so it is not a partial order.

(—) Assume z ~ a. Lett € Z. Then t ~ z so t ~ a by transitivity. Thus ¢ € @. This proves T C @.
Similarly, @ C 7, s0o T =a.

(+—) Assume T = @. Since z € Z, by symmetry, z € @. Thus x ~ a.

Sincea € b,a ~ b and hence @ =_5 by Proposition 2.4.3. Similarly d € Eimplies d =0, hence@ = d.
Now d ¢ ¢ implies d # €, so €N d = () by Proposition 2.4.4. Since @ = d, so alsoa N¢ = 0.

(a) We must show that < is reflexive, antisymmetric and transitive on A. The relation is reflexive: For
any (a,b) € A, (a,b) ~ (a,b) because a < a and b < b.
It is antisymmetric: If (a,b), (c,d) € A, with (a,b) ~ (c,d) and (c,d) ~ (a,b), thena < c,
d<bc<aandb<d. Soa=c,b=d,hence, (a,b) = (c,d).
It is transitive: If (a,b), (c,d), (e, f) € A with (a,b) ~ (c,d) and (c,d) ~ (e, f), thena < c,
d<bc<eand f<d Soa<e(ecausea <c<e)and f < b (because f < d < b), so
(a,b) ~ (e, f)

(b) (A, <) is not totally ordered since, for example, (1,4) and (2, 5) are not comparable: (1,4) %
(2,5) because 5 £ 4 and (2, 5) + (1,4) because 2 £ 1.

(a) Reflexive: For any p € A, p ~ psince p = p.

Symmetric: If p ~ ¢ then either p = q (so ¢ = p) or the line through p and g passes through the
origin (in which case the line through g and p passes through the origin). Thus g ~ p.

Transitive: Suppose p ~ ¢ and g ~ r. If the points p, g, r are different, then the line through p
and q passes through the origin, as does the line through ¢ and r. Since the line through the origin
and q is unique, p and 7 lie on this line, p ~ 7. If p = r, then p ~ r. If p = g # r, then the line
through g and r passes through the origin, so the line through p and r passes through the origin;
thus p ~ r. The remaining case, p # ¢ = r is similar.

(b) The equivalence class of a point p is the line through the origin and p. The equivalence classes are
lines through the origin.

Reflexive: Forany A € P(Z), A C A.

Antisymmetric: If A, B C P(Z) with A C Band B C A, then A = B.

Transitive: If A, B,C C P(Z) with AC B,BC C,then A C C.

. a . .
(a) Reflexive: For any a € A, — = 1 is an integer, so a < a.
a

Antisymmetric: If a < b and b < a, then both 2 and % are (necessarily positive) integers. The
only positive integer whose reciprocal is also an integer is 1, so a = b.

Transitive: If a < b and b < ¢, then g and % are both integers. Thus g g = 5 is an integer. So
a=xc
8
b)) 4 6 (c) 1is minimal and minimum,; 6 and 8 are maximal. There is no maximum

element.

(d) (A4, =) is not totally ordered; for example, 4 and 6 are not comparable.



23. Two elements of a poset can have at most one least upper bound and here’s why. Let ¢;, ¢, each be
least upper bounds for elements a and b. Then £; is an upper bound for a and b, so {2 < ¢; because {3
is least. Interchanging £1, £5 in the preceding statement gives £; < 3. So £; = {5 by antisymmetry.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


