## CHAPTER 0

## Preliminaries

- 1.  $\{1, 2, 3, 4\}$ ;  $\{1, 3, 5, 7\}$ ;  $\{1, 5, 7, 11\}$ ;  $\{1, 3, 7, 9, 11, 13, 17, 19\}$ ;  $\{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24\}$
- 2. **a.** 2; 10 **b.** 4; 40 **c.** 4: 120; **d.** 1; 1050 **e.**  $pq^2$ ;  $p^2q^3$
- 3. 12, 2, 2, 10, 1, 0, 4, 5.
- 4. s = -3, t = 2; s = 8, t = -5
- 5. By using 0 as an exponent if necessary, we may write  $a = p_1^{m_1} \cdots p_k^{m_k}$  and  $b = p_1^{n_1} \cdots p_k^{n_k}$ , where the p's are distinct primes and the m's and n's are nonnegative. Then  $\operatorname{lcm}(a,b) = p_1^{s_1} \cdots p_k^{s_k}$ , where  $s_i = \max(m_i,n_i)$  and  $\gcd(a,b) = p_1^{t_1} \cdots p_k^{t_k}$ , where  $t_i = \min(m_i,n_i)$  Then  $\operatorname{lcm}(a,b) \cdot \gcd(a,b) = p_1^{m_1+n_1} \cdots p_k^{m_k+n_k} = ab$ .
- 6. The first part follows from the Fundamental Theorem of Arithmetic; for the second part, take  $a=4,\,b=6,\,c=12.$
- 7. Write  $a = nq_1 + r_1$  and  $b = nq_2 + r_2$ , where  $0 \le r_1, r_2 < n$ . We may assume that  $r_1 \ge r_2$ . Then  $a b = n(q_1 q_2) + (r_1 r_2)$ , where  $r_1 r_2 \ge 0$ . If  $a \mod n = b \mod n$ , then  $r_1 = r_2$  and n divides a b. If n divides a b, then by the uniqueness of the remainder, we then have  $r_1 r_2 = 0$ . Thus,  $r_1 = r_2$  and therefore  $a \mod n = b \mod n$ .
- 8. Write as + bt = d. Then a's + b't = (a/d)s + (b/d)t = 1.
- 9. By Exercise 7, to prove that  $(a+b) \mod n = (a'+b') \mod n$  and  $(ab) \mod n = (a'b') \mod n$  it suffices to show that n divides (a+b)-(a'+b') and ab-a'b'. Since n divides both a-a' and n divides b-b', it divides their difference. Because  $a=a' \mod n$  and  $b=b' \mod n$  there are integers s and t such that a=a'+ns and b=b'+nt. Thus ab=(a'+ns)(b'+nt)=a'b'+nsb'+a'nt+nsnt. Thus, ab-a'b' is divisible by n.
- 10. Write d = au + bv. Since t divides both a and b, it divides d. Write s = mq + r where  $0 \le r < m$ . Then r = s mq is a common multiple of both a and b so r = 0.
- 11. Suppose that there is an integer n such that  $ab \mod n = 1$ . Then there is an integer q such that ab nq = 1. Since d divides both a and n, d also divides 1. So, d = 1. On the other hand, if d = 1, then by the corollary of Theorem 0.2, there are integers s and t such that as + nt = 1. Thus, modulo n, as = 1.

0/Preliminaries 2

- 12. 7(5n+3) 5(7n+4) = 1
- 13. By the GCD Theorem there are integers s and t such that ms + nt = 1. Then m(sr) + n(tr) = r.
- 14. It suffices to show that  $(p^2 + q^2 + r^2) \mod 3 = 0$ . Notice that for any integer a not divisible by 3,  $a \mod 3$  is 1 or 2 and therefore  $a^2 \mod 3 = 1$ . So,  $(p^2 + q^2 + r^2) \mod 3 = p^2 \mod 3 + q^2 \mod 3 + r^2 \mod 3 = 3 \mod 3 = 0$ .
- 15. Let p be a prime greater than 3. By the Division Algorithm, we can write p in the form 6n + r, where r satisfies  $0 \le r < 6$ . Now observe that 6n, 6n + 2, 6n + 3, and 6n + 4 are not prime.
- 16. By properties of modular arithmetic we have  $(7^{1000}) \mod 6 = (7 \mod 6)^{1000} = 1^{1000} = 1$ . Similarly,  $(6^{1001}) \mod 7 = (6 \mod 7)^{1001} = -1^{1001} \mod 7 = -1 = 6 \mod 7$ .
- 17. Since st divides a b, both s and t divide a b. The converse is true when gcd(s,t) = 1.
- 18. Observe that  $8^{402} \mod 5 = 3^{402} \mod 5$  and  $3^4 \mod 5 = 1$ . Thus,  $8^{402} \mod 5 = (3^4)^{100} 3^2 \mod 5 = 4$ .
- 19. If gcd(a,bc) = 1, then there is no prime that divides both a and bc. By Euclid's Lemma and unique factorization, this means that there is no prime that divides both a and b or both a and c. Conversely, if no prime divides both a and b or both a and c, then by Euclid's Lemma, no prime divides both a and bc.
- 20. If one of the primes did divide  $k = p_1 p_2 \cdots p_n + 1$ , it would also divide 1.
- 21. Suppose that there are only a finite number of primes  $p_1, p_2, \ldots, p_n$ . Then, by Exercise 20,  $p_1p_2 \ldots p_n + 1$  is not divisible by any prime. This means that  $p_1p_2 \ldots p_n + 1$ , which is larger than any of  $p_1, p_2, \ldots, p_n$ , is itself prime. This contradicts the assumption that  $p_1, p_2, \ldots, p_n$  is the list of all primes.
- 22.  $\frac{-7}{58} + \frac{3}{58}i$
- 23.  $\frac{-5+2i}{4-5i} = \frac{-5+2i}{4-5i} \frac{4+5i}{4+5i} = \frac{-30}{41} + \frac{-17}{41}i$
- 24. Let  $z_1=a+bi$  and  $z_2=c+di$ . Then  $z_1z_2=(ac-bd)+(ad+bc);$   $|z_1|=\sqrt{a^2+b^2},$   $|z_2|=\sqrt{c^2+d^2},$   $|z_1z_2|=\sqrt{a^2c^2+b^2d^2+a^2d^2+b^2c^2}=|z_1||z_2|.$
- 25. x NAND y is 1 if and only if both inputs are 0; x XNOR y is 1 if and only if both inputs are the same.
- 26. If x = 1, the output is y, else it is z.

0/Preliminaries 3

27. Let S be a set with n+1 elements and pick some a in S. By induction, S has  $2^n$  subsets that do not contain a. But there is one-to-one correspondence between the subsets of S that do not contain a and those that do. So, there are  $2 \cdot 2^n = 2^{n+1}$  subsets in all.

- 28. Use induction and note that  $2^{n+1}3^{2n+2} 1 = 18(2^n3^{2n}) 1 = 18(2^n3^{3n} 1) + 17$ .
- 29. Consider n=200!+2. Then 2 divides n, 3 divides n+1, 4 divides  $n+2, \ldots,$  and 202 divides n+200.
- 30. Use induction on n.
- 31. Say  $p_1p_2\cdots p_r=q_1q_2\cdots q_s$ , where the p's and the q's are primes. By the Generalized Euclid's Lemma,  $p_1$  divides some  $q_i$ , say  $q_1$  (we may relabel the q's if necessary). Then  $p_1=q_1$  and  $p_2\cdots p_r=q_2\cdots q_s$ . Repeating this argument at each step we obtain  $p_2=q_2,\cdots,p_r=q_r$  and r=s.
- 32. 47. Mimic Example 12.
- 33. Suppose that S is a set that contains a and whenever  $n \geq a$  belongs to S, then  $n+1 \in S$ . We must prove that S contains all integers greater than or equal to a. Let T be the set of all integers greater than a that are not in S and suppose that T is not empty. Let b be the smallest integer in T (if T has no negative integers, b exists because of the Well Ordering Principle; if T has negative integers, it can have only a finite number of them so that there is a smallest one). Then  $b-1 \in S$ , and therefore  $b=(b-1)+1 \in S$ . This contradicts our assumption that b is not in S.
- 34. By the Second Principle of Mathematical Induction,  $f_n = f_{n-1} + f_{n-2} < 2^{n-1} + 2^{n-2} = 2^{n-2}(2+1) < 2^n.$
- 35. For n = 1, observe that  $1^3 + 2^3 + 3^3 = 36$ . Assume that  $n^3 + (n+1)^3 + (n+2)^3 = 9m$  for some integer m. We must prove that  $(n+1)^3 + (n+2)^3 + (n+3)^3$  is a multiple of 9. Using the induction hypothesis we have that  $(n+1)^3 + (n+2)^3 + (n+3)^3 = 9m n^3 + (n+3)^3 = 9m n^3 + n^3 + 3 \cdot n^2 \cdot 3 + 3 \cdot n \cdot 9 + 3^3 = 9m + 9n^2 + 27n + 27 = 9(m+n^2+3n+3)$ .
- 36. You must verify the cases n = 1 and n = 2. This situation arises in cases where the arguments that the statement is true for n implies that it is true for n + 2 is different when n is even and when n is odd.
- 37. The statement is true for any divisor of  $8^3 4 = 508$ .
- 38. One need only verify the equation for n = 0, 1, 2, 3, 4, 5. Alternatively, observe that  $n^3 n = n(n-1)(n+1)$ .
- 39. Since  $3736 \mod 24 = 16$ , it would be 6 p.m.

0/Preliminaries 4

- 40. 5
- 41. Observe that the number with the decimal representation  $a_9a_8...a_1a_0$  is  $a_910^9 + a_810^8 + \cdots + a_110 + a_0$ . From Exercise 9 and the fact that  $a_i10^i \mod 9 = a_i \mod 9$  we deduce that the check digit is  $(a_9 + a_8 + \cdots + a_1 + a_0) \mod 9$ . So, substituting 0 for 9 or vice versa for any  $a_i$  does not change the value of  $(a_9 + a_8 + \cdots + a_1 + a_0) \mod 9$ .
- 42. No
- 43. For the case in which the check digit is not involved, the argument given Exercise 41 applies to transposition errors. Denote the money order number by  $a_9a_8 \ldots a_1a_0c$  where c is the check digit. For a transposition involving the check digit  $c = (a_9 + a_8 + \cdots + a_0) \mod 9$  to go undetected, we must have  $a_0 = (a_9 + a_8 + \cdots + a_1 + c) \mod 9$ . Substituting for c yields  $2(a_9 + a_8 + \cdots + a_0) \mod 9 = a_0$ . Then cancelling the  $a_0$ , multiplying by sides by 5, and reducing module 9, we have  $10(a_9 + a_8 + \cdots + a_1) = a_9 + a_8 + \cdots + a_1 = 0$ . It follows that  $c = a_9 + a_8 \cdots + a_1 + a_0 = a_0$ . In this case the transposition does not yield an error.
- 44. 4
- 45. Say the number is  $a_8a_7...a_1a_0 = a_810^8 + a_710^7 + \cdots + a_110 + a_0$ . Then the error is undetected if and only if  $(a_i10^i a_i'10^i) \mod 7 = 0$ . Multiplying both sides by  $5^i$  and noting that 50 mod 7 = 1, we obtain  $(a_i a_i') \mod 7 = 0$ .
- 46. All except those involving a and b with |a-b|=7.
- 47. 4
- 48. Observe that for any integer k between 0 and 8,  $k \div 9 = .kkk...$
- 50. 7
- 51. Say that the weight for a is i. Then an error is undetected if modulo 11, ai + b(i-1) + c(i-2) = bi + c(i-1) + a(i-2). This reduces to the cases where  $(2a b c) \mod 11 = 0$ .
- 52. Say the valid number is  $a_1 a_2 
  ldots a_{10} a_{10}$