Chapter 1 # The Wave Function ## Problem 1.1 (a) $$\langle j \rangle^2 = 21^2 = \boxed{441.}$$ $$\langle j^2 \rangle = \frac{1}{N} \sum_j j^2 N(j) = \frac{1}{14} \left[(14^2) + (15^2) + 3(16^2) + 2(22^2) + 2(24^2) + 5(25^2) \right]$$ $$= \frac{1}{14} (196 + 225 + 768 + 968 + 1152 + 3125) = \frac{6434}{14} = \boxed{459.571.}$$ $$\sigma^{2} = \frac{1}{N} \sum_{j=0}^{N} (\Delta j)^{2} N(j) = \frac{1}{14} \left[(-7)^{2} + (-6)^{2} + (-5)^{2} \cdot 3 + (1)^{2} \cdot 2 + (3)^{2} \cdot 2 + (4)^{2} \cdot 5 \right]$$ $$= \frac{1}{14} (49 + 36 + 75 + 2 + 18 + 80) = \frac{260}{14} = \boxed{18.571.}$$ $$\sigma = \sqrt{18.571} = \boxed{4.309.}$$ (c) $$\langle j^2 \rangle - \langle j \rangle^2 = 459.571 - 441 = 18.571. \quad [\text{Agrees with (b)}.]$$ ## Problem 1.2 (a) $$\langle x^2 \rangle = \int_0^h x^2 \frac{1}{2\sqrt{hx}} dx = \frac{1}{2\sqrt{h}} \left(\frac{2}{5} x^{5/2} \right) \Big|_0^h = \frac{h^2}{5}.$$ $$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 = \frac{h^2}{5} - \left(\frac{h}{3} \right)^2 = \frac{4}{45} h^2 \implies \sigma = \boxed{\frac{2h}{3\sqrt{5}} = 0.2981h.}$$ (b) $$P = 1 - \int_{x_{-}}^{x_{+}} \frac{1}{2\sqrt{hx}} dx = 1 - \frac{1}{2\sqrt{h}} (2\sqrt{x}) \Big|_{x_{-}}^{x_{+}} = 1 - \frac{1}{\sqrt{h}} (\sqrt{x_{+}} - \sqrt{x_{-}}).$$ $$x_{+} \equiv \langle x \rangle + \sigma = 0.3333h + 0.2981h = 0.6315h; \quad x_{-} \equiv \langle x \rangle - \sigma = 0.3333h - 0.2981h = 0.0352h.$$ $$P = 1 - \sqrt{0.6315} + \sqrt{0.0352} = \boxed{0.393.}$$ ## Problem 1.3 (a) $$1 = \int_{-\infty}^{\infty} A e^{-\lambda (x-a)^2} dx. \quad \text{Let } u \equiv x - a, \, du = dx, \, u : -\infty \to \infty.$$ $$1 = A \int_{-\infty}^{\infty} e^{-\lambda u^2} du = A \sqrt{\frac{\pi}{\lambda}} \quad \Rightarrow \boxed{A = \sqrt{\frac{\lambda}{\pi}}.}$$ (b) $$\langle x \rangle = A \int_{-\infty}^{\infty} x e^{-\lambda(x-a)^2} dx = A \int_{-\infty}^{\infty} (u+a)e^{-\lambda u^2} du$$ $$= A \left[\int_{-\infty}^{\infty} u e^{-\lambda u^2} du + a \int_{-\infty}^{\infty} e^{-\lambda u^2} du \right] = A \left(0 + a \sqrt{\frac{\pi}{\lambda}} \right) = \boxed{a}.$$ $$\langle x^2 \rangle = A \int_{-\infty}^{\infty} x^2 e^{-\lambda(x-a)^2} dx$$ $$= A \left\{ \int_{-\infty}^{\infty} u^2 e^{-\lambda u^2} du + 2a \int_{-\infty}^{\infty} u e^{-\lambda u^2} du + a^2 \int_{-\infty}^{\infty} e^{-\lambda u^2} du \right\}$$ $$= A \left[\frac{1}{2\lambda} \sqrt{\frac{\pi}{\lambda}} + 0 + a^2 \sqrt{\frac{\pi}{\lambda}} \right] = \boxed{a^2 + \frac{1}{2\lambda}}.$$ $$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 = a^2 + \frac{1}{2\lambda} - a^2 = \frac{1}{2\lambda}; \qquad \boxed{\sigma = \frac{1}{\sqrt{2\lambda}}}.$$ ©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. (c) # Problem 1.4 (a) $$1 = \frac{|A|^2}{a^2} \int_0^a x^2 dx + \frac{|A|^2}{(b-a)^2} \int_a^b (b-x)^2 dx = |A|^2 \left\{ \frac{1}{a^2} \left(\frac{x^3}{3} \right) \Big|_0^a + \frac{1}{(b-a)^2} \left(-\frac{(b-x)^3}{3} \right) \Big|_a^b \right\}$$ $$= |A|^2 \left[\frac{a}{3} + \frac{b-a}{3} \right] = |A|^2 \frac{b}{3} \implies \boxed{A = \sqrt{\frac{3}{b}}}.$$ (b) - (c) At x = a. - (d) $$P = \int_0^a |\Psi|^2 dx = \frac{|A|^2}{a^2} \int_0^a x^2 dx = |A|^2 \frac{a}{3} = \boxed{\frac{a}{b}}. \begin{cases} P = 1 & \text{if } b = a, \checkmark \\ P = 1/2 & \text{if } b = 2a. \checkmark \end{cases}$$ (e) $$\begin{split} \langle x \rangle &= \int x |\Psi|^2 dx = |A|^2 \bigg\{ \frac{1}{a^2} \int_0^a x^3 dx + \frac{1}{(b-a)^2} \int_a^b x (b-x)^2 dx \bigg\} \\ &= \frac{3}{b} \left\{ \frac{1}{a^2} \left(\frac{x^4}{4} \right) \bigg|_0^a + \frac{1}{(b-a)^2} \left(b^2 \frac{x^2}{2} - 2b \frac{x^3}{3} + \frac{x^4}{4} \right) \bigg|_a^b \right\} \\ &= \frac{3}{4b(b-a)^2} \left[a^2 (b-a)^2 + 2b^4 - 8b^4/3 + b^4 - 2a^2 b^2 + 8a^3 b/3 - a^4 \right] \\ &= \frac{3}{4b(b-a)^2} \left(\frac{b^4}{3} - a^2 b^2 + \frac{2}{3}a^3 b \right) = \frac{1}{4(b-a)^2} (b^3 - 3a^2 b + 2a^3) = \boxed{\frac{2a+b}{4}}. \end{split}$$ #### Problem 1.5 (a) $$1 = \int |\Psi|^2 dx = 2|A|^2 \int_0^\infty e^{-2\lambda x} dx = 2|A|^2 \left(\frac{e^{-2\lambda x}}{-2\lambda}\right)\Big|_0^\infty = \frac{|A|^2}{\lambda}; \quad \boxed{A = \sqrt{\lambda}.}$$ (b) $$\langle x \rangle = \int x |\Psi|^2 dx = |A|^2 \int_{-\infty}^{\infty} x e^{-2\lambda |x|} dx = \boxed{0.}$$ [Odd integrand.] $$\langle x^2 \rangle = 2|A|^2 \int_0^\infty x^2 e^{-2\lambda x} dx = 2\lambda \left[\frac{2}{(2\lambda)^3} \right] = \boxed{\frac{1}{2\lambda^2}}.$$ (c) $$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 = \frac{1}{2\lambda^2}; \qquad \boxed{\sigma = \frac{1}{\sqrt{2}\lambda}.} \qquad |\Psi(\pm \sigma)|^2 = |A|^2 e^{-2\lambda\sigma} = \lambda e^{-2\lambda/\sqrt{2}\lambda} = \lambda e^{-\sqrt{2}} = 0.2431\lambda.$$ Probability outside: $$2\int_{\sigma}^{\infty} |\Psi|^2 dx = 2|A|^2 \int_{\sigma}^{\infty} e^{-2\lambda x} dx = 2\lambda \left(\frac{e^{-2\lambda x}}{-2\lambda}\right)\Big|_{\sigma}^{\infty} = e^{-2\lambda\sigma} = \boxed{e^{-\sqrt{2}} = 0.2431.}$$ # Problem 1.6 For integration by parts, the differentiation has to be with respect to the *integration* variable – in this case the differentiation is with respect to t, but the integration variable is x. It's true that $$\frac{\partial}{\partial t}(x|\Psi|^2) = \frac{\partial x}{\partial t}|\Psi|^2 + x\frac{\partial}{\partial t}|\Psi|^2 = x\frac{\partial}{\partial t}|\Psi|^2,$$ but this does *not* allow us to perform the integration: $$\int_a^b x \frac{\partial}{\partial t} |\Psi|^2 dx = \int_a^b \frac{\partial}{\partial t} (x |\Psi|^2) dx \neq (x |\Psi|^2) \Big|_a^b.$$ #### Problem 1.7 From Eq. 1.33, $\frac{d\langle p \rangle}{dt} = -i\hbar \int \frac{\partial}{\partial t} \left(\Psi^* \frac{\partial \Psi}{\partial x} \right) dx$. But, noting that $\frac{\partial^2 \Psi}{\partial x \partial t} = \frac{\partial^2 \Psi}{\partial t \partial x}$ and using Eqs. 1.23-1.24: $$\begin{split} \frac{\partial}{\partial t} \left(\Psi^* \frac{\partial \Psi}{\partial x} \right) &= \frac{\partial \Psi^*}{\partial t} \frac{\partial \Psi}{\partial x} + \Psi^* \frac{\partial}{\partial x} \left(\frac{\partial \Psi}{\partial t} \right) = \left[-\frac{i\hbar}{2m} \frac{\partial^2 \Psi^*}{\partial x^2} + \frac{i}{\hbar} V \Psi^* \right] \frac{\partial \Psi}{\partial x} + \Psi^* \frac{\partial}{\partial x} \left[\frac{i\hbar}{2m} \frac{\partial^2 \Psi}{\partial x^2} - \frac{i}{\hbar} V \Psi \right] \\ &= \frac{i\hbar}{2m} \left[\Psi^* \frac{\partial^3 \Psi}{\partial x^3} - \frac{\partial^2 \Psi^*}{\partial x^2} \frac{\partial \Psi}{\partial x} \right] + \frac{i}{\hbar} \left[V \Psi^* \frac{\partial \Psi}{\partial x} - \Psi^* \frac{\partial}{\partial x} (V \Psi) \right] \end{split}$$ The first term integrates to zero, using integration by parts twice, and the second term can be simplified to $V\Psi^*\frac{\partial\Psi}{\partial x}-\Psi^*V\frac{\partial\Psi}{\partial x}-\Psi^*\frac{\partial V}{\partial x}\Psi=-|\Psi|^2\frac{\partial V}{\partial x}$. So $$\frac{d\langle p\rangle}{dt} = -i\hbar \left(\frac{i}{\hbar}\right) \int -|\Psi|^2 \frac{\partial V}{\partial x} dx = \langle -\frac{\partial V}{\partial x} \rangle. \quad \text{QED}$$ # Problem 1.8 Suppose Ψ satisfies the Schrödinger equation without V_0 : $i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi$. We want to find the solution Ψ_0 with V_0 : $i\hbar \frac{\partial \Psi_0}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi_0}{\partial x^2} + (V + V_0)\Psi_0$. Claim: $$\Psi_0 = \Psi e^{-iV_0t/\hbar}$$ Proof: $$i\hbar \frac{\partial \Psi_0}{\partial t} = i\hbar \frac{\partial \Psi}{\partial t} e^{-iV_0 t/\hbar} + i\hbar \Psi \left(-\frac{iV_0}{\hbar} \right) e^{-iV_0 t/\hbar} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V \Psi \right] e^{-iV_0 t/\hbar} + V_0 \Psi e^{-iV_0 t/\hbar}$$ $$= -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi_0}{\partial x^2} + (V + V_0) \Psi_0. \qquad \text{QED}$$ This has no effect on the expectation value of a dynamical variable, since the extra phase factor, being independent of x, cancels out in Eq. 1.36. # Problem 1.9 (a) $$1 = 2|A|^2 \int_0^\infty e^{-2amx^2/\hbar} dx = 2|A|^2 \frac{1}{2} \sqrt{\frac{\pi}{(2am/\hbar)}} = |A|^2 \sqrt{\frac{\pi\hbar}{2am}}; \quad \boxed{A = \left(\frac{2am}{\pi\hbar}\right)^{1/4}}.$$ $$\frac{\partial \Psi}{\partial t} = -ia\Psi; \quad \frac{\partial \Psi}{\partial x} = -\frac{2amx}{\hbar}\Psi; \quad \frac{\partial^2 \Psi}{\partial x^2} = -\frac{2am}{\hbar}\left(\Psi + x\frac{\partial \Psi}{\partial x}\right) = -\frac{2am}{\hbar}\left(1 - \frac{2amx^2}{\hbar}\right)\Psi.$$ Plug these into the Schrödinger equation, $i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi$: $$V\Psi = i\hbar(-ia)\Psi + \frac{\hbar^2}{2m} \left(-\frac{2am}{\hbar}\right) \left(1 - \frac{2amx^2}{\hbar}\right) \Psi$$ $$= \left[\hbar a - \hbar a \left(1 - \frac{2amx^2}{\hbar}\right)\right] \Psi = 2a^2 mx^2 \Psi, \text{ so } V(x) = 2ma^2 x^2.$$ ©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.