2 Instructor Manual for Advanced Programming in the UNIX Environment

Chapter 1

1.1

1.2

1.3

14

1.5

For this exercise, we use the following two arguments for the 1s(1) command: -i
prints the i-node number of the file or directory (we say more about i-nodes in
Section 4.14), and -d prints information about a directory instead of information
on all the files in the directory.

Execute the following;:

$ 1s -1di /etc/. /etc/.. -1 says print i-node number
162561 drwxr-xr-x 66 root 4096 Feb 5 03:59 /etc/./

2 drwxr-xr-x 19 root 4096 Jan 15 07:25 /etc/../
$1s -1di /. /.. both . and . . have i-node number 2

2 drwxr-xr-x 19 root 4096 Jan 15 07:25 /./
2 drwxr-xr-x 19 root 4096 Jan 15 07:25 /../

The UNIX System is a multiprogramming, or multitasking, system. Other
processes were running at the time this program was run.

Since the msg argument to perror is a pointer, perror could modify the string
that msg points to. The qualifier const, however, says that perror does not
modify what the pointer points to. On the other hand, the error number
argument to strerror is an integer, and since C passes all arguments by value,
the strerror function couldn’t modify this value even if it wanted to. (If the
handling of function arguments in C is not clear, you should review Section 5.2 of
Kernighan and Ritchie [1988].)

During the year 2038. We can solve the problem by making the time_t data type
a 64-bit integer. If it is currently a 32-bit integer, applications will have to be
recompiled to work properly. But the problem is worse. Some file systems and
backup media store times in 32-bit integers. These would need to be updated as
well, but we still need to be able to read the old format.

Approximately 248 days.

Chapter 1 Supplemental Exercises and Answers

1.6

EXERCISE: Most UNIX system programs are relatively small and designed to do
one thing well. List at least three advantages to this approach.

SOLUTION:
1. Smaller programs are easier to maintain.

2. Smaller programs are easier to test.

3. Itis easier to have confidence that a smaller program does what it is supposed
to do than a larger program.

This text is associated with Stevens/Rago / Advanced Programming in the UNIX(R) Environment, Third Edition,

ISBN-10: 0-321-63773-9 (ISBN-13: 978-0-321-63773-4)].
Copyright 2013 by Pearson Education, Inc. Do not redistribute.

Instructor Manual for Advanced Programming in the UNIX Environment 3

4. Small programs can be combined in interesting ways to solve new problems.
For example, to find all of the misspelled words in a document, you might

type
spell filename | sort | unig

This is superior to building a spelling checker into every document editor.

1.7 EXERCISE: Usually the CPU time of a program doesn’t exceed the wall clock time
(the running time) of the program. Explain the circumstances under which this
can be false.

SOLUTION: On a multiprocessor, if an application is multithreaded, more than
one processor can accumulate CPU time at the same time, so it is possible for the
CPU time to exceed the running time of the program.

Chapter 2

2.1 The following technique is used by FreeBSD. The primitive data types that can
appear in multiple headers are defined in the header <machine/_types.h>.
For example:

#ifndef MACHINE TYPES_H_
#define MACHINE _TYPES_H_

typedef int __int32_t;
typedef unsigned int _uint32_t;
typedef _ uint32_t __size t;

.
.
.

#endif /* _MACHINE__TYPES H_ */

In each of the headers that can define the size_t primitive system data type, we
have the sequence

#ifndef _SIZE_T DECLARED

typedef _ size t size t;
#define _SIZE_T_DECLARED
#endif

This way, the typedef for size_t is executed only once.

This is an activity for the reader, intended to increase familiarity with the system
header files.

This text is associated with Stevens/Rago / Advanced Programming in the UNIX(R) Environment, Third Edition,
ISBN-10: 0-321-63773-9 (ISBN-13: 978-0-321-63773-4)].
Copyright 2013 by Pearson Education, Inc. Do not redistribute.

4 Instructor Manual for Advanced Programming in the UNIX Environment

23

If OPEN_MAX is indeterminate or ridiculously large (i.e., equal to LONG_MAX), we
can use getrlimit to get the per-process maximum for open file descriptors.
Since the per-process limit can be modified, we can’t cache the value obtained
from the previous call (it might have changed). See Figure 1.

#include "apue.h"
#include <limits.h>
#include <sys/resource.h>

#define OPEN_MAX GUESS 256

long

open_max(void)

{
long openmax;
struct rlimit rl;

if ((openmax = sysconf(_SC_OPEN MAX)) < 0 ||
openmax == LONG MAX) {

if (getrlimit(RLIMIT NOFILE, &rl) < 0)
err _sys("can’'t get file limit");

if (rl.rlim max == RLIM_INFINITY)
openmax = OPEN_MAX GUESS;

else
openmax = rl.rlim max;

}

return(openmax) ;

Figure 1 Alternative method for identifying the largest possible file descriptor

Chapter 2 Supplemental Exercises and Answers

24

EXERCISE: Use sysconf to determine the maximum number of standard I/0
streams a process can open at a time. Then try to open this number of streams.
How many can you open? Does it match what sysconf reports?

SOLUTION: The results differ depending on which platform you use. Solaris 10
reports STREAM MAX to be 256, but we can open only 253 standard I/O streams.
This is because our program already has 3 open streams when it starts: standard
input, standard output, and standard error. On Mac OS X 10.6.8, the behavior is
similar to Solaris. FreeBSD 8.0 reports STREAM_MAX to be 20,000, but we can only
open 15,098 standard I/O streams. In this case, we probably are running into the
system-wide limit for open files. Linux 3.2.0 reports STREAM_MAX to be 16, but
we can open 1021 streams. This means the limit is really 1024.

This text is associated with Stevens/Rago / Advanced Programming in the UNIX(R) Environment, Third Edition,

ISBN-10: 0-321-63773-9 (ISBN-13: 978-0-321-63773-4)].
Copyright 2013 by Pearson Education, Inc. Do not redistribute.

