SEARCH ENGINES: INFORMATION RETRIEVAL IN PRACTICE
SELECTED EXERCISE SOLUTIONS

W. BRUCE CROFT, DONALD METZLER, AND TREVOR STROHMAN

Exercise 2.2. A more-like-this query occurs when the user can click on a partic-
ular document in the result list and tell the search engine to find documents that
are similar to this one. Describe which low-level components are used to answer
this type of query and the sequence in which they are used.

A more-like-this query is answered by first retrieving the document of interest
from the document data store. Depending on how the document is represented in
the document data store, it may have to be parsed, stopped, and stemmed. The
end result of this process is a set of terms which are then weighted according to
some term weighting scheme, such as tf.idf. A query is then constructed from this
weighted set of terms using the underlying search engine’s query language. This
query is then used to score all of the documents in the collection. The highest
scoring documents are then displayed to the user.

Exercise 2.3. Document filtering is an application that stores a large number of
queries or user profiles and compares these profiles to every incoming document on
a feed. Documents that are sufficiently similar to the profile are forwarded to that
person via email or some other mechanism. Describe the architecture of a filtering
engine and how it may differ from a search engine.

Document filtering systems and search engines are very similar. In search engines,
incoming queries are matched against a collection of documents. In document fil-
tering, incoming documents are matched against a collection of profiles. Therefore,
a document filtering system can use an architecture similar to a search engine.
The primary differences between the two architectures is the type of items being
indexed, the nature of the queries, and how users interact with the systems.

Document filtering systems need to acquire (via user interaction), transform, and in-
dex user profiles, instead of documents. In addition, the document filtering system
needs to automatically transform incoming documents into queries. The queries
distilled from the incoming documents are then used to find relevant profiles.

Exercise 3.2. Suppose you have a network connection that can transfer 10MB
per second. If each web page is 10K and requires 500 milliseconds to transfer, how
many threads does your web crawler need to fully utilize the network connection?
If your crawler needs to wait 10 seconds between requests to the same web server,
what is the minimum number of distinct web servers the system needs to contact
each minute to keep the network connection fully utilized?

2 W. BRUCE CROFT, DONALD METZLER, AND TREVOR STROHMAN

Since each 10K page requires 500ms to transfer (including latency), we can compute
the rate at which a page can be downloaded using a single thread as follows:
10 KB page 1000 ms 20KB

page 500 ms S S

At this rate, the crawler would need 512 threads to fully utilize the 10MB per sec-
ond network connection.

Each of the 512 threads can download 2 pages per second, or 20 pages per 10
seconds. Thus, each thread needs to contact, at the minimum, 20 distinct web
servers every 10 second cycle. Since each thread can contact the same set of 20
web servers every 10 seconds, the crawler would need to contact a total minimum
of 512 - 20 = 10K distinct web servers per minute.

Exercise 3.3. What is the advantage of using HEAD requests instead of GET
requests during crawling? When would a crawler use a GET request instead of a
HEAD request?

Crawlers can use HEAD requests when trying to determine if a web page has
changed since the last time it was crawled. Since HEAD requests only return
a very small payload (see Figure 3.5), such requests can significantly reduce the
amount of data transferred compared to always using GET requests, thereby in-
creasing the efficiency of the crawler.

A crawler would use a GET request the first time it crawls a page or if a GET
request has indicated that the page has been updated since it was last crawled.

Exercise 3.8. Suppose that, in an effort to crawl web pages faster, you set up two
crawling machines with different starting seed URLs. Is this an effective strategy
for distributed crawling? Why or why not?

This is not a very effective strategy for distributed crawling, because the two ma-
chines are unable to share information with each other. Despite the fact that the
two machines are seeded with different URLs, this would lead to a great deal of du-
plicated effort, because the two machines would eventually crawl many of the same
URLs. This strategy could be made more effective by sharing the URL request
queue between the two machines, thereby eliminating the duplicated effort.

Exercise 4.10. Figure 4.11 shows an algorithm for computing PageRank. Prove
that the entries of the vector I sum to 1 every time the algorithm enters the loop
on line 9.

Before the first iteration of the algorithm every entry of the vector I equals %

P
(lines 6-8). Therefore, the sum of the entries is 1 since there are |P| entries in I.
During each iteration, page p’s entry in I is calculated as follows:

A (1-N1I, (1-=N)1,
Iy = |P| * Z outlinks(q) + Z |P|
a:(a.p)EL

q:outlinks(q)=0

SEARCH ENGINES: INFORMATION RETRIEVAL IN PRACTICESELECTED EXERCISE SOLUTIONS

where outlinks(q) is the number of links that are outgoing from ¢. Thus, the sum
of the entries is:

_ A, =N, d=Ni
ZIP - Z |P | Z 0utlinks(q)+ Z |P|

peP epP q:(g,p)EL g:outlinks(q)=0

1-N)]I,
- Tt T gt L S

P pEP q:(q,p)EL pEP q:outlinks(q)=0

I 1
A+ (1—=X -7 ~a
+) Z Z outlinks(q) + Z |P|
pEP \q:(q,p)EL q:outlinks(q)=0
= A+(1-))
1

I I
We can prove that > p <Zq:(q,p)EL catlints@ T 2gioutlinks(q)=0 ﬁ) =1 as fol-
lows. Every page with outlinks distributes all of its PageRank to its neighbors.
Furthermore, since the sum of the PageRanks (before entering the loop) is equal to

1, .
1, it must be that ZpeP Zq :(q,p)€L WkQ(q) =1- Zq :outlinks(q)= I - Itis easy

I,
to see that 3° p > outtinks(q)=0 TB = = > youtlinks(q)—0 Lg- Thus, the sum of the
two quantities equals 1, completing the proof.

Exercise 5.2. Our model of ranking contains a ranking function R(Q, D), which
compares each document with the query and computes a score. Those scores are
then used to determine the final ranked list.

An alternate ranking model might contain a different kind of ranking function,
f(A,B,Q), where A and B are two different documents in the collection and @
is the query. When A should be ranked higher than B, f(A, B, Q) evaluates to 1.
When A should be ranked below B, f(A4, B, Q) evaluates to —1.

If you have a ranking function R(Q, D), show how you can use it in a system
that requires one of the form f(A4, B, Q). Why can you not go the other way (use
f(A, B,Q) in a system that requires R(Q, D))?

Given a ranking function R(Q, D), one can construct a pairwise ranking function
f(A, B,Q) as follows:

1 R(Q,A)> R(Q,B)

0 otherwise

The ranking function f(A, B, Q) imposes an ordering on documents with respect to
Q. Therefore, it may be possible to assign a relative score to the documents scored
by f(A, B,Q), but it is not possible to assign an absolute score R(Q, D), unless
every possible pair of documents was first scored by f(A, B, Q), which is infeasible
in practice.

Exercise 5.3. Suppose you build a search engine that uses one hundred computers
with a million documents stored on each one, so that you can search a collection of
100 million documents. Would you prefer a ranking function like R(Q, D) or one
like f(A, B,Q) (from the previous problem). Why?

4 W. BRUCE CROFT, DONALD METZLER, AND TREVOR STROHMAN

For both R(Q, D) and f(A, B,Q), let us determine, in the worst case, the total
number of ranking function evaluations necessary to find the K most relevant doc-
uments with respect to). We first consider the number of evaluations necessary
to rank the documents on each individual machine. For R(Q, D), every document
needs to be scored, thus resulting in O(N) (N = 10°) ranking function evaluations.
Of course, the N documents would need to be sorted, but the time necessary, in
most situations, is considerably smaller than the time it takes to compute R(Q, D)
for each document. The naive application of f(A, B, @), where we apply the func-
tion to every possible pair of documents requires O(NN?) evaluations of f(4, B, Q).
However, if we treat f(A, B,Q) as a comparator, we can use it directly for sort-
ing/ranking, requiring only approximately O(N log N) evaluations of f(A4, B, Q).
When it comes to merging the results from each machine, no additional evaluations
need to be done when using R(Q, D). However, for f(A, B,Q), we need to compare
the top K documents from each machine, resulting in 100K log 100K more evalu-
ations of f(A, B,Q). Therefore, R(Q, D) should be preferred, as it requires fewer
ranking function evaluations per machine and does not incur any additional cost
when merging results across machines.

Exercise 5.4. Suppose your search engine has just retrieved the top 50 documents
from your collection based on scores from a ranking function R(Q, D). Your user
interface can show only 10 results, but you can pick any of the top 50 documents
to show. Why might you choose to show the user something other than the top 10
documents from the retrieved document set?

There are many reasons why you may want to show the user something other than
the 10 documents with the highest score with respect to R(Q, D). For example, you
may want to deduplicate the results. Often there are duplicate or near-duplicate
documents in a collection and it is typically best to only show one version of the
document in the result list. You may also want to show a diverse result set that
covers multiple aspects of the query. For example, given the query ’java’, it may be
best to show results for the programming language, coffee, and the island nation.
Other possible reasons include the need to personalize the result set (e.g., make
sure results satisfy user preferences) and ensuring fresh results (e.g., only show the
freshest, most recent results).

Exercise 5.5. Documents can easily contain thousands of non-zero features. Why
is it important that queries have only a few non-zero features?

Most ranking functions, such as the one described in Section 5.2, try to measure the
similarity between queries and documents. If a query contains only a few non-zero
features, then scoring using inverted indexes is very efficient, because only a small
number of features must be considered during scoring. However, if the query con-
tains many thousands of non-zero features, then many feature inverted lists must
be opened and, if disjunctive processing is used, many more documents may need
to be scored.

Exercise 5.9. In section 5.4.1, we created an unambiguous compression scheme
for 2-bit binary numbers. Find a sequence of numbers that takes up more space
when it is “compressed” using our scheme than when it is “uncompressed.”

