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Objectives Review Questions

Chapter 1

1.1 By the first law of thermodynamics, ∆E = q+w. If ∆E = 0, therefore, then q = −w: q = −743 kJ.

1.2 We’re taking the square root of the average momentum. The Maxwell-Boltzmann distribution

Pv(v) gives the probability of the molecules having any given speed v, and since m is a constant, this

also gives us the probability distribution of the momentum p = mv. To calculate the mean value of p,

we integrate Pv(v) p over all possible values of v, from zero to infinity. And finally, remember to take

the square root to get the rms:
[∫∞

0
Pv(v)(mv)2 dv

]1/2
, with Pv(v) given by Eq. 1.27.

Chapter 2

2.1 If Ω = 7776 The number of ways of arranging 5 distinguishable particles in 6 slots is 65 = 7776,

and this is our ensemble size for the system described. For that value of Ω, the Boltzmann entropy is

given by

SBoltzmann = kB ln Ω = (1.381 · 10−23 J K−1) ln(7776) = 1.30 · 10−22 J K1.

For the Gibbs energy, we set the probability P(i) for each of the 5 molecules equal to 1/6 (because

there are six states and each state is equally likely). We set N = 5 and get:

S = −NkB
k∑

i=1

P(i) lnP(i) Eq. 2.16

= −5kB(6)
1

6
ln

1

6
k = 6, N = 5

= 1.24 · 10−22 J K−1.

The expression has a factor of 5 from N = 5 and a factor of of 6 because we add the term P(i) lnP(i)

k = 6 times. For a system that is this rigidly defined, the Gibbs and Boltzmann entropies are the same.

2.2 We evaluate the sum in Eq. 2.33 over the lowest values of ǫ (which here means the lowest values of

the quantum number n), until additional terms do not contribute significantly:

q(T ) =

∞∑

ε=0

g(ε)e−ε/(kBT )

=

∞∑

n=0

(3n+ 1) e−(100K)kBn2/[kB(298K)]

= (1)e0 + (4)e−0.336 + (7)e−1.34 + (10)e−3.02 + (13)e−5.37 + (16)e−8.39 + . . .

= 1.000 + 2.860 + 1.829 + 0.488 + 0.061 + 0.004 + 0.0001 + . . . = 6.24.
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2.3 For a nondegenerate energy level, g = 1. Using the canonical distribution, Eq. 2.32, we find

P(ε) =
g(ε)e−ε/(kBT )

q(T )

=
(1) exp

{
−(2.2 · 10−22 J)/

[
(1.381 · 10−23 J K−1)(373 K)

]}

1205
= 0.00080.

Chapter 3

3.1 If we assume that the equipartition principle is valid for these degrees of freedom, then each O2

molecule has Nep = 3 for translation, Nep = 2 for rotation (because O2 is linear), and Nep = 1 × 2

for vibration (1 vibrational mode with kinetic and potential energy terms). For each mole of O2, the

equipartition principle predicts that the contribution to the energy will be NepRT/2, so we multiply

these values by 3.50 mol to obtain the energy contribution to our system:

E = Etrans + Erot + Evib

=
nRT

2
(3 + 2 + 2) =

(3.50 mol)(8.3145 J K−1 mol−1)(355 K)

2
(3 + 2 + 2)

These contributions come to: trans: 15.5 kJ; rot: 10.3 kJ; vib: 10.3 kJ.

3.2 We need to solve for P(v = 1), where v here is the vibrational quantum number, based on the

vibrational constant (which with v will give us the energy) and the temperature (which with ωe will

give us the partition function). We combine the vibrational partition function (Eq. 3.26)

qvib(T ) =
1

1 − e−ωe/(kBT )
=

1

1 − e−(1)(891 cm−1)/[(0.6950 cm−1/K)(428K)]
= 1.05

with the vibrational energy expression Evib = vωe in the canonical probability distribution given by

Eq. 2.32:

P(v) =
g(v)e−Evib/(kBT )

qvib(T )

=
(1)e−(1)(891 cm−1)/[(0.6950 cm−1/K)(428K)]

1.05

= 0.0475.

Note that the vibration of a diatomic is a nondegenerate mode, so we can always set g = 1 for the

vibration of a diatomic.

A couple of quick checks are available here. First, we notice that ωe is more than twice the thermal

energy kBT (as a very rough guide, the thermal energy in cm−1 is about 1.5 times the temperature in

K). That means that we expect most of the molecules to be in the ground state, because few will have

enough energy to get across the gap between v = 0 and v = 1. Sure enough, qvib = 1.05 is very close

to one, meaning that only one quantum state (the ground state) is highly populated. Secondly, the

partition function is only about 5% bigger than 1.0, which suggests that about 5% of the population is

in excited states. Since the closest excited state is v = 1, it makes sense that the probability of being

in v = 1 turns out to be 0.0475, which is just about 5%.

3.3 Asking for the fraction of molecules, the population in a given quantum state, the number of

molecules or moles (out of some total in the system) at a particular energy—all of these are ways of

asking us to find the probability of an individual state or an energy level using the canonical distribution

Eq. 2.32. To do this, we will always need three things: the degeneracy of the energy level (unless we
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are looking for a particular state among several that share the same energy), the energy expression, and

the partition function. For rotations of any linear molecule (which includes all diatomic molecules), the

expressions we need are these:

grot = 2J + 1 Erot = BeJ(J + 1) qrot =
kBT

B
.

We can quickly verify that the integral approximation for the partition function is valid, because Be ≪
kBT = (0.6950 cm−1/K)(428 K) = 297 cm−1. Then we put all this into Eq. 2.32 to get the probability:

P(J = 4) =
g(J)e−Erot/(kBT )

qrot(T )

=
(2J + 1)e−BeJ(J+1)/(kBT )

kBT/Be

=
(9)e−20(20.956 cm−1)/(297 cm−1)

(297 cm−1)/(20.956 cm−1)
= 0.155.

In this problem, we expect that the molecules are spread out over a large number of quantum states,

because the rotational constant Be is small compared to the thermal energy kBT . A fraction of 15.5%

for the J = 4 energy level is as high as it is only because Erot = 20Be = 419 cm−1 is fairly close to the

thermal energy of 297 cm−1, meaning that there is a high probability of molecules colliding with enough

energy to get to this energy level. The fact that the degeneracy increases with J also helps, because it

means that a collision that lands in any of the g = 2J + 1 = 9 quantum states that correspond to the

J = 4 energy level contribute to this probability.

3.4 The average of the momentum vector ~p = m~v should be zero for physical reasons, because every

particle has an equal probability of traveling in either direction along any Cartesian axis (unless we

add forces of some type that push or pull the molecules along a particular direction). To show that

this average is zero mathematically, we would use the classical integrated average, which is obtained

by integrating over all space the property times its probability distribution, which in this case is the

velocity vector distribution Pv3(~v) given by Eq. 1.15. For each vector component of the momentum,

we would need to solve an integral of the form (shown here just for the X component)

〈pX〉 = m

∫ ∞

−∞

(a

π

)1/2

e−a(v2
X)vX dvX .

But this integral is always zero because the Gaussian function e−a(v2
X ) is symmetric about zero whereas

vX is antisymmetric. For every value of vX from −∞ to +∞, the integrand is equal and opposite to

the value of the integrand at the point −vX . The integral sums all these values together and gets zero.

Chapter 4

4.1 The goal is to obtain a mean value of a property of our system, so we can use the integrated average,

which in general has the form

〈f(x)〉 =

∫

all space

Px(x) f(x) dx,

but for this we need the probability distribution function Px(x). What do we need before we can find

the probability? We need the partition function q(T ). Therefore, the sequence of steps we would need

is something like this:

1. Integrate
∫∞
0 e−mgZdZ to get the partition function qZ

′(T ). (I’m using q′ here instead of q because

this is not a true unitless partition function, similar instead to the q′ that was introduced in Eq.

3.7. As long as we integrate over Z with volume element dZ below, the units will cancel.)
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2. Combine this with the canonical distribution to formulate an expression for PZ(Z):

PZ(Z) =
e−mgZ(kBT )

qZ ′(T )
.

3. And finally we would integrate
∫∞
0

PZ(Z)Z dZ to get the mean value of Z.

4.2 The van der Waals equation (Eq. 4.47) reads

(

P +
a

V 2
m

)

(Vm − b) = RT.

If we know the pressure P , the molar volume Vm, and the values of the van der Waals coefficients

a = 5.57 L2 bar mol−2 and b = 0.06499 Lmol−1, then we can solve for T :

T =
1

R

(

P +
a

V 2
m

)

(Vm − b)

=
1

0.083145 bar L K−1mol−1

[

(24.0 bar) +
(5.57 L2 bar mol−2)

(1.00 L mol−1)2

]
[
(1.00 − 0.06499) L mol−1

]

= 333 K.

For the ideal gas, the temperature would be

T =
PVm
R

= 289 K,

so a pressure of 24.0 bar is high enough that we see significant deviation from ideality.

4.3 The goal here is to use the Lennard–Jones parameters to approximate the potential energy curve

u(R) for the interaction between ethane molecules using Eq. 4.11, and then to use this potential

function in the approximate expression from Eq. 4.59 for the pair correlation function. Combining

these equations and obtaining the parameters from the table, we have:

G(R) ≈ exp

{

−ε
[(

Re

R

)12

− 2

(
Re

R

)6
]

/(kBT )

}

,

where ε/kB = 230 K and Re = 4.42 Å.

4.4 We are looking for individual particles where all the spins sum to an integer. Atomic hydrogen,

like several of the other group 1 elements, has an odd mass number (so its nucleus is a fermion) and an

odd electron number (so the electron spins sum to a half-integer). That means that the combination of

nucleus and electron(s) forms an integer spin particle—a boson, and in principle, a BEC can be formed

from 1H. Like the alkali metals, 1H has the advantage that its unpaired electron allows it to be steered

in a magnetic field and magnetically cooled, but its relatively low mass and its tendency to form strong

chemical bonds make it much more challenging to form H atom BECs, but researchers accomplished

this in 1998 [1]. Neon has an integer spin nucleus and an even number of electrons, so is a boson also.

Because it is not paramagnetic, however, it cannot be confined by a magnetic trap, and so experimental

methods do not yet exist that allow us to form a BEC from neon. And 19F−, which has an odd number

of nucleons (with a total nuclear spin of 1/2) and an even number of electrons, is a fermion, and cannot

be used to form a BEC. So the candidates are only a and c, with some significant hurdles to overcome

before we see a Ne BEC formed in the lab.

Chapter 5
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5.1 Equation 5.13,

λ =
〈v〉
γ

=
1√
2ρσ

,

tells us that the mean free path depends on the number density ρ (which we can calculate if we know

P and T ) and the collision cross section σ:

ρ =
NAP

RT
=

(6.022 · 1023 mol−1)(0.23 · 105 Pa)

(8.3145 J K−1 mol−1)(220 K)
= 7.57 · 1024 m−3

λ =
1√

2(7.57 · 1024 m−3)(121 · 10−20 m2)
= 7.7 · 10−8 m.

5.2 For a gas, we can predict the diffusion constant from Eq. 5.34. Let A be N2 and B be acetylene

(HCCH):

DB:A =
〈vAB〉

2ρAσAB

〈vAB〉 =

√

8kBT

πµ

µ =
(26.04)(28.01)

26.0 + 28.0
amu = 13.49 amu

〈vAB〉 =

√

16(1.381 · 10−23 J K−1)(298 K)

π(28.0 amu)(1.661 · 10−27 kg amu−1)
= 683.8 m s−1

ρA =
NAP

RT
=

(6.022 · 1023 mol−1)(1.0 · 105 Pa)

(8.3145 J K−1 mol−1)(298 K)
= 2.431 · 1025 m−3

σAB =
1

4
(σA + 2

√
σAσB + σB)

=
1

4

(

37 + 2
√

37 · 72 + 72
)

Å
2

= 53.06 Å
2

D =
(683.8 m s−1)

2(2.431 · 1025 m−3)(53.06 · 10−20 m2)
= 2.651 · 10−5 m2 s−1 = 0.265 cm2 s−1.

Then we can use the Einstein equation (Eq. 5.36) rrms =
√

6Dt to estimate the time required.

t ≈ r2rms

6D
=

(100 cm)2

6(0.265 cm2 s−1)
= 6.3 · 103 s = 1.7 hr.

5.3 This problem is asking about the relationship between a flux and the change in concentration from

one place to another (i.e., a concentration gradient). That relationship is the subject of Fick’s first law,

so we employ Eq. 5.42:

D∆ρ/∆Z =
(1.0 · 10−15 m2 s−1)(1.0 · 10−1 mol m−3)

(1.0 · 10−8 m)

= 1.0 · 10−8 mol s−1 m−2.

Chapter 6

6.1 No matter how we heat the water, the heat must be carried from one part of the bath to the

reaction container, which will require convection, and then transferred from the water in contact

with the container into the reaction mix by conduction. At a temperature of 373 K, we don’t expect

blackbody radiation to be as efficient a means of conveying heat.
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