
Problem 1.1    [Difficulty: 3] 

 

 

 

Given: Common Substances  

Tar Sand 

“Silly Putty” Jello 

Modeling clay Toothpaste 

Wax Shaving cream 

 

Some of these substances exhibit characteristics of solids and fluids under different conditions. 

Find: Explain and give examples. 

Solution: Tar, Wax, and Jello behave as solids at room temperature or below at ordinary pressures. At high 

pressures or over long periods, they exhibit fluid characteristics. At higher temperatures, all three 

liquefy and become viscous fluids. 

Modeling clay and silly putty show fluid behavior when sheared slowly. However, they fracture 

under suddenly applied stress, which is a characteristic of solids. 

Toothpaste behaves as a solid when at rest in the tube. When the tube is squeezed hard, toothpaste 

“flows” out the spout, showing fluid behavior. Shaving cream behaves similarly. 

Sand acts solid when in repose (a sand “pile”). However, it “flows” from a spout or down a steep 

incline. 
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Problem 1.2    [Difficulty: 2] 

 

Given: Five basic conservation laws stated in Section 1-4. 

Write: A word statement of each, as they apply to a system.  

Solution: Assume that laws are to be written for a system.  

a. Conservation of mass — The mass of a system is constant by definition. 

b. Newton's second law of motion — The net force acting on a system is directly proportional to the product of the 

system mass times its acceleration. 

c. First law of thermodynamics — The change in stored energy of a system equals the net energy added to the 

system as heat and work. 

d. Second law of thermodynamics — The entropy of any isolated system cannot decrease during any process 

between equilibrium states. 

e. Principle of angular momentum — The net torque acting on a system is equal to the rate of change of angular 

momentum of the system. 
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Problem 1.3    [Difficulty: 3] 

 

Open-Ended Problem Statement: The barrel of a bicycle tire pump becomes quite warm during use. 

Explain the mechanisms responsible for the temperature increase. 

 

Discussion: Two phenomena are responsible for the temperature increase: (1) friction between the pump piston 

and barrel and (2) temperature rise of the air as it is compressed in the pump barrel. 

Friction between the pump piston and barrel converts mechanical energy (force on the piston moving through a 

distance) into thermal energy as a result of friction. Lubricating the piston helps to provide a good seal with the 

pump barrel and reduces friction (and therefore force) between the piston and barrel. 

Temperature of the trapped air rises as it is compressed. The compression is not adiabatic because it occurs during a 

finite time interval. Heat is transferred from the warm compressed air in the pump barrel to the cooler surroundings. 

This raises the temperature of the barrel, making its outside surface warm (or even hot!) to the touch.  
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Problem 1.4 

 (Difficulty: 1) 

 

 

Given: Data on oxygen tank. 
 
 

Find: Mass of oxygen. 
 
 

Solution: Compute tank volume, and then us e oxygen density to find the mass. 
 
 

The given or available 
data is: 

D = 16⋅ft p  = 1000⋅psi T = (77 + 460)⋅R T = 537⋅R 

 
 

 
For oxygen the critical temperature and pressure are:  Tc = 279⋅R pc = 725.2⋅psi (data from NIST WebBook) 

 
 

so the reduced temperature and pressure are:  

 
 

 
Using a compressiblity factor chart:  Z = 0.948 Since this number is close to 1, we can assume ideal gas behavior. 

 
 

Therefore, the governing equation is the ideal gas equation  p = ρ⋅RO2⋅T M 
and  ρ = 

V 
 
 

where V is the tank volume  V = 
3 

π⋅D 
6 

 

V =  
π 

× (16⋅ft)3 
6 

 

V = 2144.7⋅ft3 
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Hence: 
 
 



Problem 1.10 [Difficulty: 4]

NOTE: Drag formula is in error: It should be:

FD 3 π⋅ V⋅ d⋅=

Mg 

FD = 3πVd 

a = dV/dt 

Given: Data on sphere and formula for drag.

Find: Diameter of gasoline droplets that take 1 second to fall 10 in.

Solution: Use given data and data in Appendices; integrate equation of
motion by separating variables.

The data provided, or available in the Appendices, are:

μ 4.48 10 7−
×

lbf s⋅

ft2
⋅= ρw 1.94

slug

ft3
⋅= SGgas 0.72= ρgas SGgas ρw⋅= ρgas 1.40

slug

ft3
⋅=

Newton's 2nd law for the sphere (mass M) is (ignoring buoyancy effects) M
dV
dt

⋅ M g⋅ 3 π⋅ μ⋅ V⋅ d⋅−=

dV

g
3 π⋅ μ⋅ d⋅

M
V⋅−

dt=so

Integrating twice and using limits V t( )
M g⋅

3 π⋅ μ⋅ d⋅
1 e

3− π⋅ μ⋅ d⋅

M
t⋅

−

⎛
⎜
⎝

⎞

⎠⋅= x t( )
M g⋅

3 π⋅ μ⋅ d⋅
t

M
3 π⋅ μ⋅ d⋅

e

3− π⋅ μ⋅ d⋅

M
t⋅

1−

⎛
⎜
⎝

⎞

⎠⋅+

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

Replacing M with an expression involving diameter d M ρgas
π d3
⋅

6
⋅= x t( )

ρgas d2
⋅ g⋅

18 μ⋅
t

ρgas d2
⋅

18 μ⋅
e

18− μ⋅

ρgas d2⋅
t⋅

1−

⎛
⎜
⎜
⎝

⎞

⎠⋅+

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

⋅=

This equation must be solved for d so that x 1 s⋅( ) 10 in⋅= .  The answer can be obtained from manual iteration, or by using
Excel's Goal Seek.

d 4.30 10 3−
× in⋅=

0 0.025 0.05 0.075 0.1

0.25

0.5

0.75

1

t (s)

x 
(in

)

0 0.25 0.5 0.75 1

2.5

5

7.5

10

t (s)

x 
(in

)

Note That the particle quickly reaches terminal speed, so that a simpler approximate solution would be to solve Mg = 3πµVd for d,
with V = 0.25 m/s (allowing for the fact that M is a function of d)!
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Problem 1.12 [Difficulty: 3]

 

mg 

kVt 
Given: Data on sphere and terminal speed.

Find: Drag constant k, and time to reach 99% of terminal speed.

Solution: Use given data; integrate equation of motion by separating variables.

The data provided are: M 1 10 13−
× slug⋅= Vt 0.2

ft
s
⋅=

Newton's 2nd law for the general motion is (ignoring buoyancy effects) M
dV
dt

⋅ M g⋅ k V⋅−= (1)

Newton's 2nd law for the steady state motion becomes (ignoring buoyancy effects) M g⋅ k Vt⋅= so k
M g⋅
Vt

=

k 1 10 13−
× slug⋅ 32.2×

ft

s2
⋅

s
0.2 ft⋅

×
lbf s2

⋅

slug ft⋅
×= k 1.61 10 11−

×
lbf s⋅

ft
⋅=

dV

g
k
M

V⋅−

dt=To find the time to reach 99% of Vt, we need V(t).  From 1, separating variables

Integrating and using limits t
M
k

− ln 1
k

M g⋅
V⋅−⎛⎜

⎝
⎞
⎠

⋅=

We must evaluate this when V 0.99 Vt⋅= V 0.198
ft
s
⋅=

t 1− 10 13−
× slug⋅

ft

1.61 10 11−
× lbf⋅ s⋅

×
lbf s2

⋅

slug ft⋅
× ln 1 1.61 10 11−

×
lbf s⋅

ft
⋅

1

1 10 13−
× slug⋅

×
s2

32.2 ft⋅
×

0.198 ft⋅
s

×
slug ft⋅

lbf s2
⋅

×−
⎛⎜
⎜
⎝

⎞

⎠
⋅=

t 0.0286 s=
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Problem 1.7 

 (Difficulty: 2) 

 

1.7 A rocket payload with a weight on earth of 2000 𝑙𝑙𝑙 is landed on the moon where the acceleration 
due to the moon’s gravity  𝑔𝑚 ≈ 𝑔𝑒

6
. Find the mass of the payload on the earth and the moon and the 

payload’s moon weight. 

Given: Rocket payload weight on earth 𝑊𝑒 = 2000 𝑙𝑙𝑙. The acceleration due to the moon’s  gravity   
𝑔𝑚 ≈ 𝑔𝑒

6
.  

Find: The mass of payload on earth 𝑀𝑒 and on moon 𝑀𝑚 in SI and EE units. The payload’s moon weight 
𝑊𝑚. 

Solution: 

Basic equation: Newton’s law applied to mass and weight 

𝑀 =
𝑊
𝑔

 

Gravity on the moon relative to that on Earth: 

𝑔𝑚 ≈
𝑔𝑒
6

 

The value of gravity is: 

𝑔𝑒 = 32.2 
𝑓𝑓
𝑠2

 
The mass on earth is: 

𝑀𝑒 =
𝑊𝑒

𝑔𝑒
=

2000 𝑙𝑙𝑙

32.2 𝑓𝑓𝑠2 .
= 62.1 𝑠𝑠𝑠𝑠 

 The mass on moon is the same as it on earth:  

𝑀𝑚 = 62.1 𝑠𝑠𝑠𝑠 
The weight on the moon is then 

𝑊𝑚 = 𝑀𝑚𝑔𝑚 = 𝑀𝑚 �
𝑔𝑒
6
� = 𝑀𝑒 �

𝑔𝑒
6
� =

𝑊𝑒

6
= 333 𝑙𝑙𝑙 



Problem 1.8 

 (Difficulty: 1) 

 

1.8 A cubic meter of air at 101 𝑘𝑘𝑘 and 15 ℃ weighs 12.0 𝑁. What is its specific volume? What is the 
specific volume if it is cooled to −10 ℃ at constant pressure? 

Given: Specific weight 𝛾 = 12.0 𝑁
𝑚3 at  101 𝑘𝑘𝑘 and 15 ℃. 

Find: The specific volume 𝑣 at 101 𝑘𝑘𝑘 and 15 ℃. Also the specific volume 𝑣 at 101 𝑘𝑘𝑘 and −10 ℃. 

Assume:  Air can be treated as an ideal gas 

Solution: 

Basic equation:  ideal gas law: 

𝑝𝑝 = 𝑅𝑅 

The specific volume is equal to the reciprocal of the specific weight divided by gravity  

𝑣1 =
𝑔
𝛾

 

Using the value of gravity in the SI units, the specific volume is 

𝑣1 =
𝑔
𝛾

=
9.81 𝑚𝑠2
12.0 𝑁

= 0.818 
𝑚3

𝑘𝑘
 

The temperature conditions are 

𝑇1 = 15 ℃ = 288 𝐾,          𝑇2 = −10 ℃ = 263𝐾 

For 𝑣2 at the same pressure of 101 𝑘𝑘𝑘 and cooled to  −10 ℃ we have, because the gas constant is the 
same at both pressures: 

𝑣1
𝑣2

=

𝑅𝑇1
𝑝
𝑅𝑇2
𝑝

=
𝑇1
𝑇2

 

So the specific volume is 

𝑣2 = 𝑣1
𝑇2
𝑇1

= 0.818
𝑚3

𝑘𝑘
×

263 𝐾
288 𝐾

= 0.747 
𝑚3

𝑘𝑘
 

 

 



Problem 1.9 

 (Difficulty: 2) 

 

1.9 Calculate the specific weight, specific volume and density of air at 40℉ and 50 𝑝𝑝𝑝𝑝. What are the 
values if the air is then compressed isentropically to 100 psia? 

 

Given: Air temperature: 40℉, Air pressure 50 psia. 

Find: The specific weight, specific volume and density at 40℉ and 50 psia and the values at 100 psia 
after isentropic compression. 

Assume:  Air can be treated as an ideal gas 

Solution: 

Basic equation: 𝑝𝑝 = 𝑅𝑅 

The absolute temperature is 

𝑇1 = 40℉ = 500°𝑅 

The gas constant is  

𝑅 = 1715 
𝑓𝑓 ∙ 𝑙𝑙𝑙
𝑠𝑠𝑠𝑠 ∙ °𝑅

 

The specific volume is: 

𝑣1 =
𝑅𝑇1
𝑝

=
1715 𝑓𝑓 ∙ 𝑙𝑙𝑙𝑠𝑠𝑠𝑠 ∙ °𝑅

50𝑝𝑝𝑝𝑝 × 144𝑖𝑖2
𝑓𝑓2

× 500°𝑅 = 119.1 
𝑓𝑓3

𝑠𝑠𝑠𝑠
 

The density is the reciprocal of the specific volume 

𝜌1 =
1
𝑣1

= 0.0084 
𝑠𝑠𝑠𝑠
𝑓𝑓3

 

Using Newton’s second law, the specific weight is the density times gravity: 

𝛾1 = 𝜌𝜌 = 0.271 
𝑙𝑙𝑙
𝑓𝑓3

 

 

For the isentropic compression of air to 100 psia, we have the relation for entropy change of an ideal gas: 

𝑠2 − 𝑠1 = 𝑐𝑝 ln 𝑇2
𝑇1
− 𝑅 ln 𝑝2

𝑝1
  



The definition of an isentropic process is 

𝑠2 = 𝑠1 

Solving for the temperature ratio 

𝑇2
𝑇1

= �
𝑝2
𝑝1
�
𝑅/𝑐𝑝

 

The values of R and specific heat are  

𝑅 = 1715 
𝑓𝑓 ∙ 𝑙𝑙𝑙
𝑠𝑠𝑠𝑠 ∙ °𝑅

= 53.3 
𝑓𝑓 ∙ 𝑙𝑙𝑙
𝑙𝑙 ∙ °𝑅

= 0.0686 
𝐵𝐵𝐵
𝑙𝑙 ∙ °𝑅

 

𝑐𝑝 = 0.24 𝐵𝐵𝐵
𝑙𝑙𝑙 𝑅

 

The temperature after compression to 100 psia is 

𝑇2 = 𝑇1 �
𝑝2
𝑝1
�
𝑅/𝑐𝑝

= 500 𝑅 �
100 𝑝𝑝𝑝𝑝
50 𝑝𝑝𝑝𝑝

�
0.0686/0.24

= 610 °𝑅 

 

𝑝2 = 100 𝑝𝑝𝑝𝑝 = 14400
𝑙𝑙𝑙
𝑓𝑓2

 

The specific volume is computed using the ideal gas law: 

𝑣2 =
𝑅𝑇2
𝑝2

=
1715 𝑓𝑓 ∙ 𝑙𝑙𝑙𝑠𝑠𝑠𝑠 ∙ °𝑅

100𝑝𝑝𝑝𝑝 × 144𝑖𝑖2
𝑓𝑓2

× 610.00°𝑅 = 72.6 
𝑓𝑓3

𝑠𝑠𝑠𝑠
 

The density is the reciprocal of the specific volume 

𝜌2 =
1
𝑣2

= 0.0138 
𝑠𝑠𝑠𝑠
𝑓𝑓3

 

The specific weight is: 

𝛾2 = 𝜌2𝑔 = 0.444  
𝑙𝑙𝑙
𝑓𝑓3

 

 

 



Problem 1.13 [Difficulty: 5]

 

mg 

kVt 
Given: Data on sphere and terminal speed from Problem 1.12.

Find: Distance traveled to reach 99% of terminal speed; plot of distance versus time.

Solution: Use given data; integrate equation of motion by separating variables.

The data provided are: M 1 10 13−
× slug⋅= Vt 0.2

ft
s
⋅=

Newton's 2nd law for the general motion is (ignoring buoyancy effects) M
dV
dt

⋅ M g⋅ k V⋅−= (1)

Newton's 2nd law for the steady state motion becomes (ignoring buoyancy effects) M g⋅ k Vt⋅= so k
M g⋅
Vt

=

k 1 10 13−
× slug⋅ 32.2×

ft

s2
⋅

s
0.2 ft⋅

×
lbf s2

⋅

slug ft⋅
×= k 1.61 10 11−

×
lbf s⋅

ft
⋅=

To find the distance to reach 99% of Vt, we need V(y).  From 1: M
dV
dt

⋅ M
dy
dt
⋅

dV
dy
⋅= M V⋅

dV
dy
⋅= M g⋅ k V⋅−=

V dV⋅

g
k
M

V⋅−

dy=Separating variables

Integrating and using limits y
M2 g⋅

k2
− ln 1

k
M g⋅

V⋅−⎛⎜
⎝

⎞
⎠

⋅
M
k

V⋅−=

We must evaluate this when V 0.99 Vt⋅= V 0.198
ft
s
⋅=

y 1 10 13−
⋅ slug⋅( )2 32.2 ft⋅

s2
⋅

ft

1.61 10 11−
⋅ lbf⋅ s⋅

⎛
⎜
⎝

⎞

⎠

2
⋅

lbf s2
⋅

slug ft⋅

⎛
⎜
⎝

⎞

⎠

2

⋅ ln 1 1.61 10 11−
⋅

lbf s⋅
ft

⋅
1

1 10 13−
⋅ slug⋅

⋅
s2

32.2 ft⋅
⋅

0.198 ft⋅
s

⋅
slug ft⋅

lbf s2
⋅

⋅−
⎛⎜
⎜
⎝

⎞

⎠
⋅

1 10 13−
⋅ slug⋅

ft

1.61 10 11−
⋅ lbf⋅ s⋅

×
0.198 ft⋅

s
×

lbf s2
⋅

slug ft⋅
×+

...=

y 4.49 10 3−
× ft⋅=

Alternatively we could use the approach of Problem 1.12 and first find the time to reach terminal speed, and use this time in y(t) to
find the above value of y:

dV

g
k
M

V⋅−

dt=From 1, separating variables

Integrating and using limits t
M
k

− ln 1
k

M g⋅
V⋅−⎛⎜

⎝
⎞
⎠

⋅= (2)
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We must evaluate this when V 0.99 Vt⋅= V 0.198
ft
s
⋅=

t 1 10 13−
× slug⋅

ft

1.61 10 11−
× lbf⋅ s⋅

×
lbf s2

⋅

slug ft⋅
⋅ ln 1 1.61 10 11−

×
lbf s⋅

ft
⋅

1

1 10 13−
× slug⋅

×
s2

32.2 ft⋅
×

0.198 ft⋅
s

×
slug ft⋅

lbf s2
⋅

×−
⎛⎜
⎜
⎝

⎞

⎠
⋅=

t 0.0286 s=

From 2, after rearranging V
dy
dt

=
M g⋅

k
1 e

k

M
− t⋅

−

⎛
⎜
⎝

⎞

⎠⋅=

Integrating and using limits y
M g⋅

k
t

M
k

e

k

M
− t⋅

1−

⎛
⎜
⎝

⎞

⎠⋅+

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

y 1 10 13−
× slug⋅

32.2 ft⋅

s2
×

ft

1.61 10 11−
× lbf⋅ s⋅

×
lbf s2

⋅

slug ft⋅
⋅ 0.0291 s⋅

10 13− slug⋅
ft

1.61 10 11−
× lbf⋅ s⋅

⋅
lbf s2

⋅

slug ft⋅
⋅ e

1.61 10 11−×

1 10 13−×
− .0291⋅

1−

⎛
⎜
⎜
⎝

⎞

⎠⋅+

...⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

⋅=

y 4.49 10 3−
× ft⋅=

0 5 10 15 20 25

1.25

2.5

3.75

5

t (ms)

y 
(0

.0
01

 ft
)

This plot can also be presented in Excel.



Problem 1.14 [Difficulty: 4]

Given: Data on sky diver: M 70 kg⋅= k 0.25
N s2
⋅

m2
⋅=

Find: Maximum speed; speed after 100 m; plot speed as function of time and distance.

Solution: Use given data; integrate equation of motion by separating variables.

Treat the sky diver as a system; apply Newton's 2nd law:

Newton's 2nd law for the sky diver  (mass M) is (ignoring buoyancy effects): M
dV
dt

⋅ M g⋅ k V2
⋅−= (1)

 

Mg 

FD = kV2 

a = dV/dt

(a) For terminal speed Vt, acceleration is zero, so M g⋅ k V2
⋅− 0= so Vt

M g⋅
k

=

Vt 70 kg⋅ 9.81×
m

s2
⋅

m2

0.25 N⋅ s2
⋅

×
N s2
⋅

kg m×
⋅

⎛⎜
⎜
⎝

⎞

⎠

1

2

= Vt 52.4
m
s

=

(b) For V at y = 100 m we need to find V(y).  From (1) M
dV
dt

⋅ M
dV
dy
⋅

dy
dt
⋅= M V⋅

dV
dt

⋅= M g⋅ k V2
⋅−=

Separating variables and integrating:

0

V

V
V

1
k V2
⋅

M g⋅
−

⌠
⎮
⎮
⎮
⎮
⌡

d
0

y
yg

⌠
⎮
⌡

d=

so ln 1
k V2
⋅

M g⋅
−

⎛
⎜
⎝

⎞

⎠
2 k⋅
M

− y= or V2 M g⋅
k

1 e

2 k⋅ y⋅

M
−

−

⎛
⎜
⎝

⎞

⎠⋅=

Hence V y( ) Vt 1 e

2 k⋅ y⋅

M
−

−

⎛
⎜
⎝

⎞

⎠

1

2

⋅=

For y = 100 m: V 100 m⋅( ) 52.4
m
s

⋅ 1 e

2− 0.25×
N s2⋅

m2
⋅ 100× m⋅

1

70 kg⋅
×

kg m⋅

s2 N⋅
×

−

⎛
⎜
⎜
⎝

⎞

⎠

1

2

⋅= V 100 m⋅( ) 37.4
m
s

⋅=
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0 100 200 300 400 500

20

40

60

y(m)

V
(m

/s
)

(c) For V(t) we need to integrate (1) with respect to t: M
dV
dt

⋅ M g⋅ k V2
⋅−=

Separating variables and integrating:

0

V

V
V

M g⋅
k

V2
−

⌠
⎮
⎮
⎮
⌡

d
0

t
t1

⌠
⎮
⌡

d=

so t
1
2

M
k g⋅

⋅ ln

M g⋅
k

V+

M g⋅
k

V−

⎛⎜
⎜
⎜
⎜⎝

⎞
⎟
⎟
⎠

⋅=
1
2

M
k g⋅

⋅ ln
Vt V+

Vt V−

⎛
⎜
⎝

⎞

⎠
⋅=

Rearranging V t( ) Vt
e
2

k g⋅

M
⋅ t⋅

1−

⎛
⎜
⎝

⎞

⎠

e
2

k g⋅

M
⋅ t⋅

1+

⎛
⎜
⎝

⎞

⎠

⋅= or V t( ) Vt tanh Vt
k
M
⋅ t⋅⎛⎜

⎝
⎞
⎠

⋅=

0 5 10 15 20

20

40

60

t(s)

V
(m

/s
)

V t( )

t

The two graphs can also be plotted in Excel.



Problem 1.16    [Difficulty: 3] 

 

Given: Long bow at range, R = 100 m. Maximum height of arrow is h = 10 m. Neglect air resistance. 

Find: Estimate of (a) speed, and (b) angle, of arrow leaving the bow. 

Plot: (a) release speed, and (b) angle, as a function of h  

Solution: Let V u i v j V i j)0 0 0= + = +0 0 0(cos sinθ θ  

ΣF m mgy
dv
dt= = − , so v = v0 – gt, and  tf  =  2tv=0 = 2v0/g  

Also, mv dv
dy

mg, v dv g dy, 0
v
2

gh0
2

= − = − − = −  

Thus h v 2g0
2=  (1) 

ΣF m du
dt

0, so u u const, and R u t
2u v

g0 0 f
0 0

x = = = = = =  (2) 

From Eq. 1: v 2gh0
2 =  (3) 

From Eq. 2: u gR
2v

gR
2 2gh

u gR
8h0

0
0
2

2
= = ∴ =  

Then 2
1

2

0

2
2
0

2
0

2
0 8

2and2
8 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=+=+=

h
gRghVgh

h
gRvuV  (4) 

s
m7.37

m10
1m100

s
m

8
81.9m10

s
m81.92

2
1

22
220 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
××+××=V  

From Eq. 3: v 2gh V sin sin
2gh
V0 0

1

0
= = = −θ θ,  (5) 

R 

V0 
θ0 

y 
x 

h 
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°=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
×⎟

⎠
⎞

⎜
⎝
⎛ ××= − 8.21

m 37.7
sm10

s
m81.92sin

2
1

2
1θ  

Plots of V0 = V0(h) (Eq. 4) and θ0 =   θ 0(h) (Eq. 5) are presented below: 
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Problem 1.17 [Difficulty: 2]

Given: Basic dimensions M, L, t and T.

Find: Dimensional representation of quantities below, and typical units in SI and English systems.

Solution:

(a) Power Power
Energy
Time

Force Distance×

Time
==

F L⋅
t

=

From Newton's 2nd law Force Mass Acceleration×= so F
M L⋅

t2
=

Hence Power
F L⋅

t
=

M L⋅ L⋅

t2 t⋅
=

M L2
⋅

t3
=

kg m2
⋅

s3

slug ft2⋅

s3

(b) Pressure Pressure
Force
Area

=
F

L2
=

M L⋅

t2 L2
⋅

=
M

L t2⋅
=

kg

m s2
⋅

slug

ft s2
⋅

(c) Modulus of elasticity Pressure
Force
Area

=
F

L2
=

M L⋅

t2 L2
⋅

=
M

L t2⋅
=

kg

m s2
⋅

slug

ft s2
⋅

(d) Angular velocity AngularVelocity
Radians

Time
=

1
t

=
1
s

1
s

(e) Energy Energy Force Distance×= F L⋅=
M L⋅ L⋅

t2
=

M L2
⋅

t2
=

kg m2
⋅

s2

slug ft2⋅

s2

(f) Moment of a force MomentOfForce Force Length×= F L⋅=
M L⋅ L⋅

t2
=

M L2
⋅

t2
=

kg m2
⋅

s2

slug ft2⋅

s2

(g) Momentum Momentum Mass Velocity×= M
L
t

⋅=
M L⋅

t
=

kg m⋅
s

slug ft⋅
s

(h) Shear stress ShearStress
Force
Area

=
F

L2
=

M L⋅

t2 L2
⋅

=
M

L t2⋅
=

kg

m s2
⋅

slug

ft s2
⋅

(i) Strain Strain
LengthChange

Length
=

L
L

= Dimensionless

(j) Angular momentum AngularMomentum Momentum Distance×=
M L⋅

t
L⋅=

M L2
⋅

t
=

kg m2
⋅

s
slugs ft2⋅

s
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Problem 1.14 

 (Difficulty: 1) 

 

1.14 The density of a sample of sea water is 1.99 𝑠𝑠𝑠𝑠𝑠 𝑓𝑓3⁄ . What are the values in SI and EE units? 

 

Given: The density of sea water is  1.99 𝑠𝑠𝑠𝑠𝑠 𝑓𝑓3⁄  

Find: The density of sea water in SI and EE units 

Solution: 

For SI unit: 

The relations between the units are  1 𝑚 = 3.28 𝑓𝑓 , 1 𝑘𝑘 = 0.0685 𝑠𝑠𝑠𝑠 

𝜌 = 1.99
𝑠𝑠𝑠𝑠
𝑓𝑓3

=
1.99 × 1

0.0685 𝑘𝑘
1

3.283 𝑚
3

= 1026 
𝑘𝑘
𝑚3 

For EE units: 

The relation between a lbm and a slug is  1 𝑙𝑙𝑙 = 0.0311 𝑠𝑠𝑠𝑠 

𝜌 = 1.99
𝑠𝑠𝑠𝑔
𝑓𝑓3

=
1.99 × 1

0.0311 𝑙𝑙𝑙
𝑓𝑓3

= 64.0 
𝑙𝑙𝑙
𝑓𝑓3

 

 



Problem 1.15 

 (Difficulty: 1) 

 

1.15 A pump is rated at 50 ℎ𝑝; What is the rating in 𝑘𝑘 and 𝐵𝐵𝐵 ℎ𝑟⁄  ? 

 

Given: The pump is rated at 50 ℎ𝑝. 

Find: The rating in 𝑘𝑘 and 𝐵𝐵𝐵 ℎ𝑟⁄ . 

Solution: 

The relation between the units is 

1 𝑘𝑘 = 1.341 ℎ𝑝 

1 
𝐵𝐵𝐵
ℎ𝑟

= 0.000393 ℎ𝑝 

The power is then 

𝑃 = 50 ℎ𝑝 = 50 ℎ𝑝 ×
1 𝑘𝑘

1.341 ℎ𝑝
 = 37.3 𝑘𝑘 

𝑃 = 50 ℎ𝑝 = 50 ℎ𝑝 ×
1 𝐵𝐵𝐵ℎ𝑟

0.000393
ℎ𝑝 = 127,200 

𝐵𝐵𝐵
ℎ𝑟

 

 



Problem 1.16 

 (Difficulty: 1) 

 

1.16 A fluid occupying 3.2 𝑚3 has a mass of 4𝑀𝑀. Calculate its density and specific volume in SI, EE and 
BG units. 

 

Given: The fluid volume 𝑉 = 3.2 𝑚3 and mass  𝑚 = 4𝑀𝑀. 

Find: Density and specific volume in SI, EE and BG units. 

Solution: 

For SI units: 

The density is the mass divided by the volume 

𝜌 =
𝑚
𝑉

=
4000 𝑘𝑘
3.2 𝑚3 = 1250 

𝑘𝑘
𝑚3 

The specific volume is the reciprocal of the density: 

𝑣 =
1
𝜌

= 8 × 10−4
𝑚3

𝑘𝑘
 

For EE units: 

1 
𝑙𝑙𝑙
𝑓𝑓3

= 16.0 
𝑘𝑘
𝑚3 

The density is: 

 𝜌 =
1250
16.0

𝑙𝑙𝑙
𝑓𝑓3

= 78.0
𝑙𝑙𝑙
𝑓𝑓3

  

And the specific volume is:  

𝑣 =
1
𝜌

=
1

78.0
 
𝑓𝑓3

𝑙𝑙𝑙
= 0.0128  

𝑓𝑓3

𝑙𝑙𝑙
 

For BG unit, the relation between slug and lbm is: 

1 
𝑠𝑠𝑠𝑠
𝑓𝑓3

= 32.2 
𝑙𝑙𝑙
𝑓𝑓3

   

The density is: 

 𝜌 =
78.0
32.2

𝑠𝑠𝑠𝑠
𝑓𝑓3

= 2.43 
𝑠𝑠𝑠𝑠
𝑓𝑓3

 



And the specific volume is  

𝑣 =
1
𝜌

=
1

2.43
 
𝑓𝑓3

𝑠𝑠𝑠𝑠
= 0.412  

𝑓𝑓3

𝑠𝑠𝑠𝑠
 



Problem 1.17 

 (Difficulty: 1) 

 

1.17 If a power plant is rated at 2000 𝑀𝑀 output and operates (on average) at 75% of rated power, 
how much energy (in 𝐽 and 𝑓𝑓 ∙ 𝑙𝑙𝑙) does it put out a year. 

Given: The power plant is rated at = 2000 𝑀𝑀 . Efficiency 𝜂 = 75%. 

Find: Energy output per year 𝐸 in SI and EE units. 

Solution: 

For SI units: 

The energy produced is a year is:  

𝐸 = 𝑃𝑃 ∙ 𝜂 = 2000 × 106 𝑊 × �365
𝑑𝑑𝑑
𝑦𝑦

× 24
ℎ𝑟
𝑑𝑑𝑑

× 3600
𝑠
ℎ𝑟
�  𝑠 × 0.75 = 4.73 × 1016  𝐽 

For EE units: 

The relation between ft-lbf and Joules is 

1 𝑓𝑓 ∙ 𝑙𝑙𝑙 = 1.356 𝐽 

The energy is: 

𝐸 =
4.73 × 1016

1.356
𝑓𝑓 ∙ 𝑙𝑙𝑙 = 3.49 × 1016 𝑓𝑓 ∙ 𝑙𝑙𝑙 



Problem 1.18 [Difficulty: 2]

Given: Basic dimensions F, L, t and T.

Find: Dimensional representation of quantities below, and typical units in SI and English systems.

Solution:

(a) Power Power
Energy
Time

Force Distance×

Time
==

F L⋅
t

=
N m⋅

s
lbf ft⋅

s

(b) Pressure Pressure
Force
Area

=
F

L2
=

N

m2

lbf

ft2

(c) Modulus of elasticity Pressure
Force
Area

=
F

L2
=

N

m2

lbf

ft2

(d) Angular velocity AngularVelocity
Radians

Time
=

1
t

=
1
s

1
s

(e) Energy Energy Force Distance×= F L⋅= N m⋅ lbf ft⋅

(f) Momentum Momentum Mass Velocity×= M
L
t

⋅=

From Newton's 2nd law Force Mass Acceleration×= so F M
L

t2
⋅= or M

F t2⋅
L

=

Hence Momentum M
L
t

⋅=
F t2⋅ L⋅

L t⋅
= F t⋅= N s⋅ lbf s⋅

(g) Shear stress ShearStress
Force
Area

=
F

L2
=

N

m2

lbf

ft2

(h) Specific heat SpecificHeat
Energy

Mass Temperature×
=

F L⋅
M T⋅

=
F L⋅

F t2⋅
L

⎛
⎜
⎝

⎞

⎠
T⋅

=
L2

t2 T⋅
=

m2

s2 K⋅

ft2

s2 R⋅

(i) Thermal expansion coefficient ThermalExpansionCoefficient

LengthChange

Length

Temperature
=

1
T

=
1
K

1
R

(j) Angular momentum AngularMomentum Momentum Distance×= F t⋅ L⋅= N m⋅ s⋅ lbf ft⋅ s⋅
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Problem 1.20 [Difficulty: 1]

Given: Pressure, volume and density data in certain units

Find: Convert to different units

Solution:

Using data from tables (e.g. Table G.2)

(a) 1 psi⋅ 1 psi⋅
6895 Pa⋅

1 psi⋅
×

1 kPa⋅

1000 Pa⋅
×= 6.89 kPa⋅=

(b) 1 liter⋅ 1 liter⋅
1 quart⋅

0.946 liter⋅
×

1 gal⋅

4 quart⋅
×= 0.264 gal⋅=

(c) 1
lbf s⋅

ft2
⋅ 1

lbf s⋅

ft2
⋅

4.448 N⋅
1 lbf⋅

×

1
12

ft⋅

0.0254m⋅

⎛
⎜
⎜
⎝

⎞

⎠

2

×= 47.9
N s⋅

m2
⋅=
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Problem 1.22 [Difficulty: 1]

Given: Quantities in English Engineering (or customary) units.

Find: Quantities in SI units.

Solution: Use Table G.2 and other sources (e.g., Machinery's Handbook, Mark's Standard Handbook)

(a) 3.7 acre⋅ ft⋅ 3.7 acre⋅
4047 m2

⋅

1 acre⋅
×

0.3048 m⋅
1 ft⋅

×= 4.56 103
× m3

⋅=

(b) 150
in3

s
⋅ 150

in3

s
⋅

0.0254 m⋅
1 in⋅

⎛⎜
⎝

⎞
⎠

3
×= 0.00246

m3

s
⋅=

(c) 3 gpm⋅ 3
gal
min
⋅

231 in3
⋅

1 gal⋅
×

0.0254 m⋅
1 in⋅

⎛⎜
⎝

⎞
⎠

3
×

1 min⋅

60 s⋅
⋅= 0.000189

m3

s
⋅=

(d) 3
mph

s
⋅ 3

mile
hr s⋅
⋅

1609 m⋅
1 mile⋅

×
1 hr⋅

3600 s⋅
×= 1.34

m

s2
⋅=
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Problem 1.23 [Difficulty: 1]

Given: Quantities in English Engineering (or customary) units.

Find: Quantities in SI units.

Solution: Use Table G.2 and other sources (e.g., Google)

(a) 100
ft3

m
⋅ 100

ft3

min
⋅

0.0254 m⋅
1 in⋅

12 in⋅
1 ft⋅

×⎛⎜
⎝

⎞
⎠

3
×

1 min⋅

60 s⋅
×= 0.0472

m3

s
⋅=

(b) 5 gal⋅ 5 gal⋅
231 in3

⋅

1 gal⋅
×

0.0254 m⋅
1 in⋅

⎛⎜
⎝

⎞
⎠

3
×= 0.0189 m3

⋅=

(c) 65 mph⋅ 65
mile
hr

⋅
1852 m⋅
1 mile⋅

×
1 hr⋅

3600 s⋅
×= 29.1

m
s

⋅=

(d) 5.4 acres⋅ 5.4 acre⋅
4047 m3

⋅

1 acre⋅
×= 2.19 104

× m2
⋅=
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Problem 1.24 [Difficulty: 1]

Given: Quantities in SI (or other) units.

Find: Quantities in BG units.

Solution: Use Table G.2.

(a) 50 m2
⋅ 50 m2

⋅
1 in⋅

0.0254m⋅
1 ft⋅
12 in⋅

×⎛⎜
⎝

⎞
⎠

2
×= 538 ft2

⋅=

(b) 250 cc⋅ 250 cm3
⋅

1 m⋅
100 cm⋅

1 in⋅
0.0254m⋅

×
1 ft⋅
12 in⋅

×⎛⎜
⎝

⎞
⎠

3
×= 8.83 10 3−

× ft3
⋅=

(c) 100 kW⋅ 100 kW⋅
1000 W⋅
1 kW⋅

×
1 hp⋅

746 W⋅
×= 134 hp⋅=

(d) 5
kg

m2
⋅ 5

kg

m2
⋅

0.0254m⋅
1 in⋅

12 in⋅
1 ft⋅

×⎛⎜
⎝

⎞
⎠

2
×

1 slug⋅

14.95 kg⋅
×= 0.0318

slug

ft2
⋅=
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Problem 1.26 [Difficulty: 2]

Given: Geometry of tank, and weight of propane.

Find: Volume of propane, and tank volume; explain the discrepancy.

Solution: Use Table G.2 and other sources (e.g., Google) as needed.

The author's tank is approximately 12 in in diameter, and the cylindrical part is about 8 in.  The weight of propane specified is 17 lb.

The tank diameter is D 12 in⋅=

The tank cylindrical height is L 8 in⋅=

The mass of propane is mprop 17 lbm⋅=

The specific gravity of propane is SGprop 0.495=

The density of water is ρ 998
kg

m3
⋅=

The volume of propane is given by Vprop
mprop
ρprop

=
mprop

SGprop ρ⋅
=

Vprop 17 lbm⋅
1

0.495
×

m3

998 kg⋅
×

0.454 kg⋅

1 lbm⋅
×

1 in⋅
0.0254 m⋅

⎛⎜
⎝

⎞
⎠

3
×= Vprop 953 in3

⋅=

The volume of the tank is given by a cylinder diameter D length L, πD2L/4 and a sphere (two halves) given by πD3/6

Vtank
π D2
⋅

4
L⋅

π D3
⋅

6
+=

Vtank
π 12 in⋅( )2
⋅

4
8⋅ in⋅ π

12 in⋅( )3

6
⋅+= Vtank 1810 in3

⋅=

The ratio of propane to tank volumes is
Vprop
Vtank

53 %⋅=

This seems low, and can be explained by a) tanks are not filled completely, b) the geometry of the tank gave an overestimate of
the volume (the ends are not really hemispheres, and we have not allowed for tank wall thickness).
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Problem 1.28 [Difficulty: 1]

Given: Data in given units

Find: Convert to different units

Solution:

(a) 1
in3

min
⋅ 1

in3

min
⋅

0.0254m⋅
1 in⋅

1000 mm⋅

1 m⋅
×⎛⎜

⎝
⎞
⎠

3
×

1 min⋅

60 s⋅
×= 273

mm3

s
⋅=

(b) 1
m3

s
⋅ 1

m3

s
⋅

1 gal⋅

4 0.000946× m3
⋅

×
60 s⋅
1 min⋅

×= 15850gpm⋅=

(c) 1
liter
min
⋅ 1

liter
min
⋅

1 gal⋅

4 0.946× liter⋅
×

60 s⋅
1 min⋅

×= 0.264 gpm⋅=

(d) 1 SCFM⋅ 1
ft3

min
⋅

0.0254 m⋅
1
12

ft⋅

⎛
⎜
⎜
⎝

⎞

⎠

3
×

60 min⋅

1 hr⋅
×= 1.70

m3

hr
⋅=
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Problem 1.30 [Difficulty: 1]

Given: Definition of kgf.

Find: Conversion from psig to kgf/cm2.

Solution: Use Table G.2.

Define kgf kgf 1 kg⋅ 9.81×
m

s2
⋅= kgf 9.81N=

Then 32
lbf

in2
⋅

4.448 N⋅
1 lbf⋅

×
1 kgf⋅

9.81 N⋅
×

12 in⋅
1 ft⋅

1 ft⋅
0.3048m⋅

×
1 m⋅

100 cm⋅
×⎛⎜

⎝
⎞
⎠

2
× 2.25

kgf

cm2
=

Vandana
Text Box
 Problem 1.25

Vandana
Text Box
1.25

asznajdr
Text Box
appropriate Table 



[Difficulty: 2]Problem 1.32

Given: Equation for COPideal and temperature data.

Find: COPideal, EER, and compare to a typical Energy Star compliant EER value. 

Solution: Use the COP equation.  Then use conversions from Table G.2 or other sources (e.g., www.energystar.gov) to
find the EER.

The given data is TL 20 273+( ) K⋅= TL 293 K⋅= TH 40 273+( ) K⋅= TH 313 K⋅=

The COPIdeal is COPIdeal
293

313 293−
14.65==

The EER is a similar measure to COP except the cooling rate (numerator) is in BTU/hr and the electrical input (denominator) is in W:

EERIdeal COPIdeal

BTU

hr

W
×= EERIdeal 14.65

2545
BTU

hr
⋅

746 W⋅
× 50.0

BTU
hr W⋅
⋅==

This compares to Energy Star compliant values of about 15 BTU/hr/W!  We have some way to go!  We can define the isentropic
efficiency as

ηisen
EERActual
EERIdeal

=

Hence the isentropic efficiency of a very good AC is about 30%. 
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Problem 1.33 [Difficulty: 2]

Given: Equation for maximum flow rate.

Find: Whether it is dimensionally correct.  If not, find units of 2.38 coefficient.  Write a SI version of the equation

Solution: Rearrange equation to check units of 0.04 term.  Then use conversions from Table G.2 or other sources (e.g., Google)

"Solving" the equation for the constant 2.38: 2.38
mmax T0⋅

At p0⋅
=

Substituting the units of the terms on the right, the units of the constant are

slug
s

R

1

2
×

1

ft2
×

1
psi

×
slug

s
R

1

2
×

1

ft2
×

in2

lbf
×

lbf s2
⋅

slug ft⋅
×=

R

1

2 in2
⋅ s⋅

ft3
=

Hence the constant is actually c 2.38
R

1

2 in2
⋅ s⋅

ft3
⋅=

For BG units we could start with the equation and convert each term (e.g., At), and combine the result into a new constant, or simply
convert c directly:

c 2.38
R

1

2 in2
⋅ s⋅

ft3
⋅= 2.38

R

1

2 in2
⋅ s⋅

ft3
⋅

K
1.8 R⋅

⎛⎜
⎝

⎞
⎠

1

2
×

1 ft⋅
12 in⋅

⎛⎜
⎝

⎞
⎠

2
×

1 ft⋅
0.3048m⋅

×=

c 0.04
K

1

2 s⋅
m

⋅= so mmax 0.04
At p0⋅

T0
⋅=  with At in m2, p0 in Pa, and T0 in K.
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Problem 1.34 [Difficulty: 1]

Given: Equation for mean free path of a molecule.

Find: Dimensions of C for a diemsionally consistent equation. 

Solution: Use the mean free path equation.  Then "solve" for C and use dimensions.

The mean free path equation is λ C
m

ρ d2
⋅

⋅=

"Solving" for C, and using dimensions C
λ ρ⋅ d2

⋅

m
=

C

L
M

L3
× L2

×

M
= 0= The constant C is dimensionless.
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Problem 1.36 [Difficulty: 1]

Given: Data on a container and added water.

Find: Weight and volume of water added.

Solution: Use Appendix A.

For the empty container Wc 3.5 lbf⋅=

For the filled container Mtotal 2.5 slug⋅=

The weight of water is then Ww Mtotal g⋅ Wc−=

Ww 2.5 slug⋅ 32.2×
ft

s2
⋅

1 lbf⋅ s2
⋅

1 slug⋅ ft⋅
× 3.5 lbf⋅−= Ww 77.0 lbf=

The temperature is 90°F 32.2°C= and from Table A.7 ρ 1.93
slug

ft3
⋅=

Hence Vw
Mw

ρ
= or Vw

Ww
g ρ⋅

=

Vw 77.0 lbf⋅
1

32.2
×

s2

ft
⋅

1
1.93

×
ft3

slug
⋅

1 slug⋅ ft⋅

1 lbf⋅ s2
⋅

×= Vw 1.24ft3
=
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Problem 1.38 [Difficulty: 1]

Given: Specific speed in customary units

Find: Units; Specific speed in SI units

Solution:

The units are rpm gpm

1

2
⋅

ft

3

4

or ft

3

4

s

3

2

Using data from tables (e.g. Table G.2)

NScu 2000
rpm gpm

1

2
⋅

ft

3

4

⋅=

NScu 2000
rpm gpm

1

2
⋅

ft

3

4

×
2 π⋅ rad⋅

1 rev⋅
×

1 min⋅

60 s⋅
×

4 0.000946× m3
⋅

1 gal⋅

1 min⋅

60 s⋅
⋅

⎛
⎜
⎝

⎞

⎠

1

2

×

1
12

ft⋅

0.0254 m⋅

⎛
⎜
⎜
⎝

⎞

⎠

3

4

×=

NScu 4.06

rad
s

m3

s

⎛
⎜
⎝

⎞

⎠

1

2

⋅

m

3

4

⋅=
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Problem 1.40    [Difficulty: 2] 

 

Given: Air at standard conditions – p = 29.9 in Hg, T = 59°F 

Uncertainty in p is ± 0.1 in Hg, in T is ± 0.5°F 

Note that 29.9 in Hg corresponds to 14.7 psia 

Find:  Air density using ideal gas equation of state; Estimate of uncertainty in calculated value. 

Solution:  

2

2

o

o

2 ft
in144

R519
1

lbfft 53.3
Rlb

in
lbf7.14 ××

⋅
⋅

×==
RT
pρ  

The uncertainty in density is given by  

%0963.0
59460
5.0;1

%334.0
9.29
1.0;11

2

2
1

22

±=
+

±
=−=−=−⋅=

∂
∂

±=
±

====
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

T

p

Tp

u
RT
p

RT
pT

T
T

u
RT
RT

RT
RT

p
p

u
T

Tu
p

pu

ρρ
ρ

ρ

ρ
ρ

ρ
ρ

ρ
ρρ

 

Then  

 

 

( )[ ] ( )[ ]
3

4

2
1

222
1

22

ft
lbm1066.2%348.0

%0963.0%334.0

−×±=±=

−+±=−+=

ρ

ρ

u

uuu Tp
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Problem 1.42    [Difficulty: 2] 

 

Given: Standard American golf ball:  
1)  to(20in.01.068.1
1)  to(20oz01.062.1

±=
±=

D
m

 

Find:  Density and specific gravity; Estimate uncertainties in calculated values. 

Solution: Density is mass per unit volume, so  

( )

( ) ( )
3

33

3

33

333
3
4

kg/m 1130
m0254.0

in.
oz 16

kg 4536.0
in.68.1

1oz 62.16

6
24

3

=××××=

====

π
ρ

πππ
ρ

D
m

D
m

R
m

V
m

 

and 13.1
kg 1000

m
m
kg 1130SG

3

3
OH2

=×==
ρ
ρ

 

The uncertainty in density is given by 
2
1

22

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= Dm u
D

Du
m

mu ρ
ρ

ρ
ρρ  

%595.0
68.1

1.0;36363

%617.0
62.1
01.0;11

44 ±=
±

=−=−=⎟
⎠
⎞

⎜
⎝
⎛−⋅=

∂
∂

±=
±

==
∀
∀

=
∀

=
∂
∂

D

m

u
D
m

D
mD

D
D

um
m

m

ρππρ
ρ

ρ

ρ
ρ

ρ
 

Thus 

( )[ ] ( )[ ]
0214.0%89.1

m
kg4.21%89.1%595.03%617.03 3

2
1

222
1

22

±=±==

±=±=×−+±=−+±=

ρ

ρρ

uu

uuuu

SG

Dm  

Finally, 
1)  to(20     0214.013.1SG
1)  to(20kg/m4.211130 3

±=
±=ρ
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Problem 1.43    [Difficulty: 2] 

 

Given: Pet food can  

H mm to
D mm to
m g to

= ±
= ±
= ±

102 1 20 1
73 1 20 1
397 1 20 1

( )
( )
( )

 

Find: Magnitude and estimated uncertainty of pet food density. 

Solution: Density is  

ρ
π π

ρ ρ=
∀

= = =
m m

R H
m

D H
or m2 D H2

4 ( , , )  

From uncertainty analysis: 
2
1

222

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

±= HDm u
H

Hu
D

Du
m

mu ρ
ρ

ρ
ρ

ρ
ρρ  

Evaluating: 

m
m

m
D H D H

u

D
D

D m
D H

m
D H

u

H
H

H m
D H

m
D H

u

m

D

H

ρ
ρ

ρ π ρ π

ρ
ρ

ρ π ρ π

ρ
ρ

ρ π ρ π

∂
∂

= = = =
±

= ±

∂
∂

= − = − = − =
±

= ±

∂
∂

= − = − = − =
±

= ±

4 1 1 4
1 1

397
0 252%

2 4 2 1 4 2 1
73

137%

1 4 1 1 4 1 1
102

0 980%

2 2

3 2

2 2 2

m
; .

( ) ( ) ; .

( ) ( ) ; .

 

Substituting: ( ) ( ) ( )[ ]
%92.2

980.0137.12252.01 2
1

222

±=

×−+×−+×±=

ρ

ρ

u
u  

∀ = = × × × = ×

=
∀

=
×

× =

−

−

π π

ρ

4 4
73 102 4 27 10

930

2 2 4D H mm mm m
10 mm

m

m 397 g
4.27 10 m

kg
1000 g

kg m

2
3

9 3
3

4 3
3

( ) .
 

Thus: ρ = ±930 27 2 20 1. ( )kg m to3  
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Problem 1.44    [Difficulty: 2] 

 

Given: Mass flow rate of water determine by collecting discharge over a timed interval is 0.2 kg/s. 

Scales can be read to nearest 0.05 kg. 

Stopwatch can be read to nearest 0.2 s. 

Find: Estimate precision of flow rate calculation for time intervals of (a) 10 s, and (b) 1 min. 

Solution: Apply methodology of uncertainty analysis, Appendix F: 

Computing equations: 
2
1

22

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∆∂
∂∆

+⎟
⎠
⎞

⎜
⎝
⎛

∆∂
∂∆

±=

∆
∆

=

∆∆ tmm u
t

m
m
tu

m
m

m
mu

t
mm

&

&

&

&

&

&

 

Thus 1and11
2

2

−=
∆
∆

−⋅
∆
∆

=
∆∂
∂∆

=
∆

∆=
∆∂
∂∆

t
m

m
t

t
m

m
t

t
t

m
m

m
m &

&

&

&
 

The uncertainties are expected to be ± half the least counts of the measuring instruments. 

Tabulating results:  

Time 

Interval, ∆t 

(s) 

Error in ∆t 

(s) 

Uncertainty 

in ∆t 

(%) 

Water 

Collected, 

∆m 

(kg) 

Error in ∆m 

(kg) 

Uncertainty 

in ∆m 

(%) 

Uncertainty 

in m&  

(%) 

10 ± 0.10 ± 1.0 2.0 ± 0.025 ± 1.25 ± 1.60 

60 ± 0.10 ± 0.167 12.0 ± 0.025 ± 0.208 ± 0.267 

A time interval of about 15 seconds should be chosen to reduce the uncertainty in results to ± 1 percent.  
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Problem 1.45    [Difficulty: 3] 

 

Given: Nominal mass flow rate of water determined by collecting discharge (in a beaker) over a timed 
interval is &m g s= 100 ; Scales have capacity of 1 kg, with least count of 1 g; Timer has least 
count of 0.1 s; Beakers with volume of 100, 500, 1000 mL are available – tare mass of 1000 mL 
beaker is 500 g. 
 

Find: Estimate (a) time intervals, and (b) uncertainties, in measuring mass flow rate from using each of 
the three beakers.  

 
Solution: To estimate time intervals assume beaker is filled to maximum volume in case of 100 and 500 mL 

beakers and to maximum allowable mass of water (500 g) in case of 1000 mL beaker. 
 

Then &
& &

m = m
t

and t m
m m

∆
∆

∆
∆ ∆∀

= =
ρ  

 
Tabulating results 

 
∆∀
∆

=
=

100 500 1000
1 5

mL mL mL
t s s 5 s

 

 
Apply the methodology of uncertainty analysis, Appendix E. Computing equation:

 
2
1

22

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∆∂
∂∆

+⎟
⎠
⎞

⎜
⎝
⎛

∆∂
∂∆

±= ∆∆ tmm u
t

m
m
tu

m
m

m
mu

&

&

&

&&
 

The uncertainties are ± half the least counts of the measuring instruments: δ δ∆ ∆m g t s= ± =0 5 0 05. .  

1and11
2

2

−=
∆
∆

−⋅
∆
∆

=
∆∂
∂∆

=
∆

∆=
∆∂
∂∆

t
m

m
t

t
m

m
t

t
t

m
m

m
m &

&

&

&
                      ( )[ ]2122

tmm uuu ∆∆ −+±=∴ &  

 
Tabulating results: 
 

Beaker 
Volume ∆∀ 

(mL) 

Water 
Collected 
∆m(g) 

Error in ∆m 
(g) 

Uncertainty 
in ∆m (%) 

Time 
Interval ∆t 

(s) 

Error in ∆t 
(s) 

Uncertainty 
in ∆t (%) 

Uncertainty 
in m& (%) 

100 100 ± 0.50 ± 0.50 1.0 ± 0.05 ± 5.0 ± 5.03 
500 500 ± 0.50 ± 0.10 5.0 ± 0.05 ± 1.0 ± 1.0 

1000 500 ± 0.50 ± 0.10 5.0 ± 0.05 ± 1.0 ± 1.0 

Since the scales have a capacity of 1 kg and the tare mass of the 1000 mL beaker is 500 g, there is no advantage in 
using the larger beaker. The uncertainty in m& could be reduced to ± 0.50 percent by using the large beaker if a scale 
with greater capacity the same least count were available 
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Problem 1.46    [Difficulty: 2] 

 

Given: Standard British golf ball: 
 

   
m g to
D mm to
= ±
= ±

45 9 0 3 20 1
411 0 3 20 1

. . ( )

. . ( )
 

 
Find:  Density and specific gravity; Estimate of uncertainties in calculated values. 
 
Solution: Density is mass per unit volume, so  
 

ρ
π π π

ρ
π

=
∀

= = =

= × × =

m m
R

m
D

m
D

kg m kg m3 3

4
3

3 3 3

3

3
4 2

6

6 0 0459 1
0 0411

1260

( )

.
( . )

 

and  

SG
H O

kg
m

m
kg2

3= = × =
ρ

ρ
1260

1000
126

3
.  

 
The uncertainty in density is given by   
 

%730.0
1.41

3.0;36363

%654.0
9.45
3.0;11

44

2
1

22

±=±=−=⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛−=

∂
∂

±=±==
∀
∀

=
∀

=
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

±=

D

m

Dm

u
D
m

D
mD

m
DD

um
m

m

u
D

Du
m

mu

ππρρ

ρ
ρ

ρ

ρ
ρ

ρ
ρρ

 

 
Thus 

( )[ ] ( )[ ]

0289.0%29.2
mkg9.28%29.2

730.03654.03
3

2
1

222
1

22

±=±==

±=±=

×−+±=−+±=

ρ

ρ

ρ

uu
u

uuu

SG

Dm

 

 
Summarizing ρ = ±1260 28 9 20 1. ( )kg m to3  

SG to= ±126 0 0289 20 1. . ( )  
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Problem 1.48 [Difficulty: 3]

Given: Data on water

Find: Viscosity; Uncertainty in viscosity

Solution:

The data is: A 2.414 10 5−
×

N s⋅

m2
⋅= B 247.8 K⋅= C 140 K⋅= T 303 K⋅=

The uncertainty in temperature is uT
0.5 K⋅
293 K⋅

= uT 0.171 %⋅=

Also μ T( ) A 10

B

T C−( )
⋅= Evaluating μ 293 K⋅( ) 1.005 10 3−

×
N s⋅

m2
⋅=

For the uncertainty
T

μ T( )d
d

A B⋅ ln 10( )⋅

10

B

C T− C T−( )2
⋅

−=

Hence u
μ

T( )
T

μ T( ) T
μ T( )d

d
⋅ uT⋅

ln 10( ) B T⋅ uT⋅⋅

C T−( )2
== Evaluating u

μ
T( ) 1.11 %⋅=
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Problem 1.50    [Difficulty: 3] 

 

Given: Lateral acceleration, a = 0.70 g, measured on 150-ft diameter skid pad;  Uncertainties in Path 
deviation ±2 ft; vehicle speed ±0.5 mph 

 
Find:  Estimate uncertainty in lateral acceleration; ow could experimental procedure be improved? 
 
Solution: Lateral acceleration is given by a = V2/R. 
 
From Appendix F, u u ua v R= ± +[( ) ( ) ] /2 2 2 1 2  
 

From the given data, 
s
ft1.41ft75

s
ft2.3270.0; 2

2 =××=== aRVaRV  

 

Then u V
V

mi
hr

s
41.1 ft

ft
mi

hr
3600 sv = ± = ± × × × = ±

δ 0 5 5280 0 0178. .  

 

and u R
R

2 ft
ftR = ± = ± × = ±

δ 1
75

0 0267.  

so 

 u

u percent
a

a

= ± × + = ±

= ±

( . ) ( . ) .

.

/
2 0 0178 0 0267 0 0445

4 45

2 2 1 2

 

Experimental procedure could be improved by using a larger circle, assuming the absolute errors in measurement are 
constant. 
 
For 

 

( )[ ] %4.20240.00100.00109.02

0100.0
200
2;0109.0

8.45
5.0

mph8.45
s
ft1.67ft200

s
ft2.3270.0;

ft200;ft400

22

2
2

±=±=+×±=

±=±=±=±=

==××===

==

a

RV

u

uu

aRVaRV

RD
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Given data:

H = 57.7 ft
δL = 0.5 ft
δθ = 0.2 deg

For this building height, we are to vary θ (and therefore L ) to minimize the uncertainty u H.
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Plotting u H vs θ

θ (deg) u H

5 4.02%
10 2.05%
15 1.42%
20 1.13%
25 1.00%
30 0.95%
35 0.96%
40 1.02%
45 1.11%
50 1.25%
55 1.44%
60 1.70%
65 2.07%
70 2.62%
75 3.52%
80 5.32%
85 10.69%

Optimizing using Solver

θ (deg) u H

31.4 0.947%

To find the optimum θ as a function of building height H  we need a more complex Solver

H  (ft) θ (deg) u H

50 29.9 0.992%
75 34.3 0.877%

100 37.1 0.818%
125 39.0 0.784%
175 41.3 0.747%
200 42.0 0.737%
250 43.0 0.724%
300 43.5 0.717%
400 44.1 0.709%
500 44.4 0.705%
600 44.6 0.703%
700 44.7 0.702%
800 44.8 0.701%
900 44.8 0.700%

1000 44.9 0.700%

Use Solver  to vary ALL θ's to minimize the total u H!

Total u H's:  11.3%

Uncertainty in Height (H  = 57.7 ft) vs θ

0%

2%

4%

6%

8%

10%

12%

0 10 20 30 40 50 60 70 80 90

θ (o)
u

H

Optimum Angle vs Building Height

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800 900 1000

H  (ft)

θ 
(d

eg
)



Problem 1.52    [Difficulty: 4] 

 

Given: American golf ball, m = 1.62 ± 0.01 oz, D = 1.68 in. 
 
Find: Precision to which D must be measured to estimate density within uncertainty of ± 1percent.  
 
Solution: Apply uncertainty concepts 
 
Definition: Density, 

33 Dm 4
3 6R πρ π∀≡ ∀ = =  

Computing equation: 

1
2

1

2

1
R x

1

Ru u
R x
x⎡ ⎤⎛ ⎞∂⎢ ⎥= ± +⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

L  

 
From the definition,  
 

3/6 3
6 mm

D D
(m, D)

π π
ρ ρ= = =  

 
Thus m

m 1ρ
ρ

∂
∂ = and D

D 3ρ
ρ

∂
∂ = , so  

 
1
22 2

m D

2 2 2
m D

u [(1 u ) (3 u ) ]

u u 9 u
ρ

ρ

= ± +

= +
 

Solving, 
1
22 21

D m3u [u u ]ρ= ± −  
 
From the data given, 

1
2

m

2 2
D

u 0.0100

0.01 ozu 0.00617
1.62 oz

1u [(0.0100) (0.00617) ] 0.00262 or 0.262%
3

ρ = ±

±
= = ±

= ± − = ± ±

 

Since D
D Du δ= ± , then 

 

D xD D u 1.68 in. 0.00262 0.00441in.δ = ± = ± = ±  

The ball diameter must be measured to a precision of ± 0.00441 in.( ± 0.112 mm) or better to estimate density 
within ± 1percent. A micrometer or caliper could be used. 
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