Solutions to Chapter 1

1. The intent of this rather vague problem is to get you to compare the two notions, probability
as intuition and relative frequency theory. There are many possible answers to how to
make the statement "Ralph is probably guilty of theft" have a numerical value in the relative
frequency theory. First step is to define a repeatable experiment along with its outcomes.
The favorable outcome in this case would be ’guilty.” Repeating this experiment a large
number of times would then give the desired probability in a relative frequency sense. We
thus see that it may entail a lot of work to attach an objective numerical value to such a
subjective statement, if in fact it can be done at all.

One possible approach would be to look through courthouse statistics for cases similar to
Ralph’s, similar both in terms of the case itself and the defendant. If we found a sufficiently
large number of these cases, ten at least, we could then form the probability p = np/n, where
ng is the number of favorable (guilty) verdicts, and n is the total number of found cases.
Here we effectively assume that the judge and jury are omniscient.

Another possibility is to find a large number of people with personalities and backgrounds
similar to Ralph’s, and to expose them to a very similar situation in which theft is possible.
The fraction of these people that then steal in relation to the total number of people, would
then give an objective meaning to the phrase "Ralph is probably guilty of theft."

2. Note that D — 3, but 3 4 D, i.e., D implies 3 but not the other way around. Thus if we
turn over card 2 and find a 3. So what? It was never stated that a 3 — F. Likewise, with
card 3. On the other hand, if we turn over card 4 and find a D, then the rule is violated.
Hence, we must turn over card 4 and card 1, of course.

3. First step here is to decide which kind of probability to use. Since no probabilities are
explicitly given, it is reasonable to assume that all numbers are equally likely. Effectively
we assume that the wheel is “fair." This then allows us to use the classical theory along
with the axiomatic theory to solve this problem. Now we must find the corresponding prob-
ability model. We are told in the problem statement that the experiment is “spinning the
wheel." We identify the pointed-to numbers as the outcomes ¢. The sample space is thus
02 =1{1,2,3,4,5,6,7,8,9}.The total number of outcomes is then 9. The probability of each
elemental event {i} is then taken as P[{i}] = p = 1/9, as in the classical theory. We are also
told in the problem statement that the contestant wins if an even number shows. The set of
even numbers in Q is {2,4,6,8}. We can write this event as a disjoint union of four singleton

(atomic) events
{2,4,6,8} = {2} u {4} U {6} U {8}.

Now we can apply axiom 3 of probability to write

P[{2,4,6,8}] = P[{2}]+ P[{4}] + P[{6}] + P|{8}]
1 1 1 1
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We have seen that some 'reasonable’ assumptions are necessary to transform the given word
problem into something that exactly corresponds to a probability model. It turns out that
this is a general problem for such word problems, i.e. problems given in natural English.



4. The experiment involves flipping a fair coin 3 times. The outcome of each coin toss is either
a head or a tail. Therefore, the sample space of the combined experiment that contains all
the possible outcomes of the 3 tosses, is given by

Q={HHH HHT,HTH,HTT,THH,THT,TTH,TTT}.

Since all the coins are fair, all the outcomes of the experiment are equally likely. The proba-
bility of each singleton event, i.e. an event with a single outcome, is then %. We are interested
in finding the probability of the event A, which is the event of obtaining 2 heads and 1 tail.
There are 3 favorable outcomes for this event given by A = {HHT, HTH,THH }. Therefore,
P[A] = P{HHT}U{HTH}U{THH}| = P[HHT|+ P[HTH] + P[THH| = %. Note that
we are able to write the probability of the event A as the sum of probability of the singleton
events (from Axiom 3) because the singlteon events of any experiment are mutually exclusive.
Why?

5. The experiment contains drawing two balls (with replacement) from an urn containing balls
numbered 1, 2, and 3. The sample space of the experiment is given by

Q= {11,12,13,21,22,23, 31, 32, 33}.

The event of drawing a ball twice is said to occur when one of the outcomes 11, 22, or 33
occurs. Therefore, the event of drawing 2 equal balls F, is given by E = {11,22,33} and
P[E] = P[{11}]+ P[{22}]+ P[{33}]. Since the balls are drawn at random, it can assumed that
drawing each ball is equally likely. Therefore, the singleton events, or equivalently outcomes
of the experiment, are equally likely. Hence, P[E] = 3(§) = 3.

6. Let b1,0b9,...,bg represent the six balls. Each outcome will be represented by the two balls
that were drawn. In the first experiment, the balls are drawn without replacement; hence,
the two balls drawn cannot have the same index. Then the sample space containing all the
outcomes is given by

Y = {b1b2, b1b3, b1by, b1bs, b1bs,
baby, babs, baby, babs, babs,
b3b1, b3ba, b3ba, bsbs, bsbe,
b4b1, baba, babs, babs, bsbe,
bsb1, bsba, bsbs, bsby, bsbe,
beb1, bebz, bebs, bba, bebs }.

This can be written compactly as
W ={bij1<i<6,1<j<6,i#j}.

If the first ball is replaced before the second draw, then in addition to the outcomes in the
earlier part, there are outcomes where both the two balls drawn are the same. The sample
space for the new experiment is given by

Qo = Qq U {b1b1, baba, bsbs, baba, bsbs, bebe }-

This can also be written as Qg = {bj; ;|1 <7 < 6,1 < j < 6}.



7. Let hps be the height of the man and hyy be the height of the woman. Each outcome of the
experiment can be expressed as a two-tuple (hps, hyy). Thus

(a) The sample space 2 is the set of all possible pairs of heights for the man and woman.
This is given as
Q= {(hM,hw) thy >0, hy > 0}

(b) The event FE, which is a subset of € is given by
FE = {(hM,hw) : hM > O,hw > O,hM < hw}

8. The word problem describes the physical experiment of drawing numbered balls from an urn.
We need to find a corresponding mathematical model. First we form an appropriate event
space with meaningful outcomes. Here the physical experiment is ’draw ball from urn,’” so
the outcome in words is ’particular labeled ball drawn,” which we can identify with its label.
So we select as outcome in our mathematical model, the number on the drawn ball’s face,
i.e. the particular label. The outcomes are thus the integers 1,2,3,4,5,6,7,8, 9, and 10. The
sample space is then Q = {1,2,3,4,5,6,7,8,9,10}, and is the set of all ten outcomes. We
are told that F is 'the event of drawing a ball numbered no greater than 5.” Thus we define
in our event field £ = {1,2,3,4,5}. The other event specified in the word problem is F' ’the
event of drawing a ball greater than 3 but less than 9.” In our mathematical event field this
corresponds to F' = {4,5,6,7,8}. Having constructed our sample space with indicated events,
we can use elementary set theory to determine the following answers:

E° = {6,7,8,9,10}, Fe={1,2,3,9,10},
EF = {4,5}, EUF =1{1,2,3,4,5,6,7,8},
EFe = {1,2,3}, E°F = {6,7,8},

E°UF°={1,2,3,6,7,8,9,10},
(EF°)U (E°F) = {1,2,3,6,7,8}, (EF)U (E°F°) = {4,5,9,10}
(EUF)° = {9,10}, (EF)° ={1,2,3,6,7,8,9,10}.

The last part of the problem asks us to ’express these events in words.” Since we have a
mathematical model, we should really more precisely ask what each of these events corresponds
to in words. We know of course that £ corresponds to ’drawing a ball numbered no greater
than 5. We can thus loosely write £ = {’drawing a ball numbered no greater than 5},
although in our mathematical model FE is just the set of integers {1,2,3,4,5}. So when
we write £ ={ ’drawing a ball numbered no greater than 5’}, what we really mean is that
the event E in our mathematical model corresponds to the physical event 'drawing a ball
numbered no greater than 5 mentioned in the word problem. With this caveat in mind, we
can then write:

E° = {/drawing a ball greater than 5'},
F° = {'drawing a ball not in the range 4-8 inclusive'},
EF = {'drawing a ball greater than 3 and no greater than 5'},
etc.

9. The sample space containing four equally likely outcomes is given by ©Q = {(;, (5,3, }- Two
events A = {(;,(y} and B = {(,, (3} are given. The required events can be easily obtained
by observation.



10.

11.

12.

AB¢ = set of outcomes in A and not in B = {(;}.
BA® = set of outcomes in B and not in A = {(5}.
AB = set of outcomes in A and B = {(,}.

AU B = set of outcomes in A or in B = {(y,(,(3}-

A= ABU AB¢€. This can be proved using the distributive law on
A=AQ=A(BUB° =ABUAB".
AUB = (AB°)U(BA®)U(AB). Here we first write A = A(BUB®) and B = B(AU A°).

Then we can write
AUB = (A(BUB)U(B(AUAY)
= (ABUAB°)U(BAUBA®)
= ABUAB®UBAUBAS
= ABUAB°®UBAS,

using the above laws and formulas. Notice that the above two decompositions are into disjoint
sets. From the third axiom of probability, we know that the probability of union of disjoint
sets is the sum of the probabilities of the disjoint sets. Therefore, we can add the probabilities
over the unions.

In a given random experiment there are four equally likely outcomes (;,(y, (3, and (4. Let
the event A £ {(;, (5}

PA] = P[{¢,.Co)] = PG + PUGH = 1+ 4 = 4 4°= (¢ Gy),

PlA] = P[{¢3,¢uH = PG+ Pl{Cl] =1+ 1 = 3-

Note that we are told that the four outcomes are equally likely. This means that the four
singleton (atomic) events have equal probability. P[A] =3 =1— P[A°] =1—1.

(a) The three axioms of probability are given below

(a) [label=()]

(b) For any event A, the probability of the even occuring is always non-negative.
P[A] > 0.

This ensures that probability is never negative.

(c) The probability of occurence of the sample space event (2 is one.
P[Q] = 1.

This ensures that probability of no event exceeds one. The first two axioms ensures that
the probability is a quantity between 0 and 1, inclusive.

(d) For any two events A, B that are disjoint, the probability of the union of the events is
the sum of the probabilities of the two events.

P[AU B] = P[A] + P[B], when AB = ¢.

This axiom tells us that the probability of any event can be obtained by the sum disjoint
events that constitute the event.



13.

14.

(b) The event AU B can be obtained as the disjoint union of the three sets AB, AB¢, A°B.
Hence by applying the third axiom of probability, we obtain

P[AUB] = P[ABU(AB°UA°B)]
= P[AB]+ P[AB°U A°B]
= P[AB] + P[AB‘] + P[A°B].

Now the event A can be written as the disjoint union of AB and AB¢ (Axiom 3). Therefore
P[A] = P[AB] + P[AB‘] = P[AB‘| = P[A] — P[AB]

Similarl
' P[B] = P[AB] + P|A°B] = P[A°B] = P[B] — P[AB].

Therefore P[AU B| = P[AB] + (P[A] — P[AB]) + (P|B] — P[AB]) = P[A] + P[B] — P[AB].

We first form our mathematical model by setting outcomes ¢ = (s1,<2), where ¢1 corresponds
to the label on the first ball drawn, and ¢y corresponds to the label on the second ball drawn.
We can also write the outcomes as strings ¢ = ¢1¢2. The sample space €2 can then be identified
with the 2-D array

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35.

41 42 43 44 45

51 52 53 54 55

There are thus 25 outcomes in the sample space. Now the word problem statement uses
the phrase 'at random’ to describe the drawing. This is a technical term that can be read
‘equally likely.” Thus all the elementary events {¢1¢2} in our mathematical model must have
equal probability, i.e. P[{s1¢2}] = 1/25. Armed thusly we can attack the given problem as
follows. Define the event E ={’sum of labels equals five’}, or precisely F = {41, 32,23, 14}.
Then we decompose this event into four singleton events as

E = {41} U {32} U {23} U {14}.

Since different singleton events are disjoint, probability adds, and we have

1 1 1 1
P[E] = %+%+%+2—5
4
2_5.
"Dim" ignored that outcome ij is different (distinguishable) from outcome ji. "Dense" talked
about the sums and correctly noted that there were nine of them. However, he incorrectly
assumed that each sum was equally likely. Looking at our sample space above, we can
see that the sum 2 has only one favorable outcome 11, while the sum 6 has five favorable
outcomes, just looking at the anti-diagonals of this matrix.

First we show AN(BUC) C (ANB)U(ANC).
Let z€ AN(BUCQO).

Then z € A and z € (BUC).

re€Aandze BorzelC.



Say if z € B. Then € A and « € B (Step k)

Thus z € (AN B).

And therefore z € (AN B) U (ANC). Similar arguments can be made if we consider z € C
in step k, in which case we will show that x € (AN C) and hence x € (AN B)U(ANC).
Thus we have shown that AN (BUC) C (ANB)U(ANC).

Now we show that (ANB)U(ANC)C An(BUCQC).
Suppose z € (ANB)U(ANC). Thenz € (ANB)orxz e (ANC).
Say z € (AN B)

Then z € A and z € B.

Or z € Aand z € (BUC). Or in other words, z € AN (BUC).

Similar arguments can be used to show that if z € (AN C), then x € AN (BUC).

Thus (ANB)U(ANC)C ANn(BUCQO).

Thus we have shown that both sets are contained in each other. Hence AN (BUC) =
(ANB)U(ANC).

15. We use the set identity 2 = AUA€. Since this union is disjoint, by the additivity of probability
(i.e. axiom 3), we get 1 = P[Q}] = P[A] + P[A°], which with rearranging becomes the desired
result.

16. (a) ANC =1{1,2}N{4,5,6} = ¢. Therefore,
PIANC] = Pl¢]
1 - P[Q]
(CQN® =9, 1=P[QUP = P[Q] + Plg])
= 1—1 ( because P[Q2] =1)
= 0.
(b) PIJAUBUC]| = P[{1,2} U{2,3} U{4,5,6} = P[{1,2,3,4,5,6}] = P[Q] = 1.
(c) We see that BN C = ¢ and so P[BC| = 0. For B and C to be independent, P[BC] =

P[B]P[C]. Therefore, if either P[B] = 0 or P[C] = 0 or both are zeros, B and C will be
independent.

17. This problem uses only set theory and just two axioms of probability to get these general
results.

(a) We need to show P[¢] = 0. We write the disjoint decomposition 2 = Q U ¢ and then
use the additivity of probability (axiom 3) to get

P[] = PQUJ]
= P[Q] + P[¢].
So we must have P[¢] = 0.
(b) Using set theory, we can write the disjoint decomposition
E=FEF°UEF.
Then by axiom 3, the additivity of probability, we have
P[E] = PIEF°UEF]
= P[EF°|+ P|EF],



18.

19.

20.

21.

22.

or what is the same P[EF°] = P[E] — P[EF].

(¢) Here we simply note E'U E° = () is a disjoint decomposition, so that again by axiom 3,

P[] = P[E]+ P[E]]

= 1, by axiom 2,
which is the same as P[E] =1 — P[E“].

The outcome is the result of a probabilistic experiment. An event is a collection (set) of
outcomes. The field of events is the complete collection of events that are relevant for the
given probability problem.

We start with the mutually exclusive decomposition
AUB=AB°UABUA°B,

yielding P[A U B] = P[AB¢| + P[AB] + P[A°B]. Then consider the two simple disjoint
decompositions

A=AB°UAB and B = A°BUAB,
which yield P[A] = P[AB¢]| + P[AB] and P[B] = P[A°B| + P[AB]. Putting them all
together, we have

PI[AUB] = P[AB‘|+ P[AB]+ P[A°B]
— (P[A] - P|AB]) + P|AB] + (P|B] — P[AB))
= P[A] + P|B] - P|AB].

From Eq. 1.4-3, we see that E®@ F = (E—F)U(F — E) = EF°UE‘F. We see that EF© and
E°F are disjoint, i.e., (EF°) N (E°F) = ¢. Therefore, the probability of the union of EF*
and E°F are the sum of the probabilities of the two events. In other words,

P(E & F) = P(EF°U E°F) = P(EF®) + P(E°F).

We have already (Problem 17) seen that we can write P[EF°] = P[E]— P[EF] and P[E°F]| =
P[F] — P|EF]. Therefore, P(E @& F) = P(EF¢) + P(E°F) = P[E] + P[F] — 2P[EF].

(a) For simplicity associate as follows: cat=1, dog=2, goat=3, and pig=4. The outcomes &
then become the integers 1,2,3, and 4. The sample space Q = {1,2,3,4}. For probability
information we are given:

P[{1,2}] = 0.9, P[{3,4}] = 0.1, P[{4}] = 0.05, and P[{2}] = 0.5.

Now for every event in our field of events, we must be able to specify the probability.
This is equivalent to being able to supply the probability for all the singleton events. To
see if we can do this, we note that singleton events {1} and {3} are missing probabilities,
so we first write

{1} = {1,2} — {2}, so that
P[{1}] = P[{1,2}] - P[{2}]=09-0.5=04.



Doing the same for the other missing singleton probability P[{3}], we write

{3} = {3,4} — {4}, so that
P[{3}] = P[{3,4}] — P[{4}] = 0.1 — 0.05 = 0.05.
Thus we have enough probability information for all the singleton events, and hence all

16 = 2% subsets of Q = {1,2,3,4}. The appropriate field F of events then consists of
the following events along with their probabilities:

{1}, P[{1}] = 0.4,
{2). Pl{2)] = 0.5,
{3}, P[{3}] = 0.05,
{4}, P[{4}] = 0.05,
(1,2}, P[{1,2}] = 0.9,
(1,31, P[{1,3}] = 0.45,
(1,4}, P[{1,4}] = 0.45,
(2,3}, P[{2,3}] = 0.55,
(2,4}, P[{2,4}] = 0.55,
(3,41, P[{3,4}] = 0.1,
{1,2,3}, P[{1,2,3}] = 0.95,
{1,2,4}, P{1,2,4}] = 0.95,
{1,3,41, P[{1,3,4}] = 0.5,
{2,3,4}, P[{2,3,4}] = 0.6,
{1,2,3,4}(=Q), P[{1,2,3,4}] =1 = P[Q],
o, Pl¢] = 0.

(b) Now the above is not an appropriate field of events if some of the events do not have
known probabilities. So if P['pig’= {4}] = 0.05 is removed, then we cannot determine
the probabilities of some of the above events. In particular we cannot find P[{3}]. The
alternative then is to treat {3,4}, whose probability is still given, as a singleton and
form a smaller field with just the 8 events formed by unions of {1}, {2}, and {3,4}. The
resulting field, along with its probabilities is as follows:

{1}, P[{1}] =04,

{2}, P({2}] = 05,

(1,2}, P[{1,2}] = 0.9,

3,4}, P({3,4}] = 0.1,
{1,3,4}, P[{1,3,4}] = 0.5,
{2,3,4}, P[{2,3,4}] = 0.6,

(1,2,3,4}(=Q), P[{1,2,3,4}] =1 = P[Q],
5 Plg] =0.

23. First we show that AU (BNC) C (AUB)N(AUC).
Suppose z € AN (BUC)
Thenz € A
Therefore x € (AU B), and z € (AU Q)
Hence, z € (AUB)N (AUC).

Now we show that (AUB)N(AUC)C AU(BNCQC).
Suppose x € (AUB)N(AUC)



24.

25.

26.

27.

28.

Then z € (AUB) and z € (AUC)

x € AorB and x € AorC

Ifze A thenz e AU(BNC) (because A C (AU (BNCQ)))
Ifx€ A, thenx € Band z € C.

Or in other words, x € (BN C)

x€e AU (BNCOC).

Thus we have shown that both the sets are contained in each other. Therefore, AU(BNC) =
(AUB)N(AUC).

The probability of 4 is P[A] = P[{¢y, (o} = P{¢1}H + P{¢o} = 3 +3 = 3. The event (set)
A¢ in terms of the outcomes is A¢ = {(3,(,}. The probabilty of A°is P[A°] = P[{(3,(4}] =
P[{¢3} + P[{¢4}] = 3+ 3 = 3. Note that we are told that the four outcomes are equally

likely. This means that the four singleton (atomic) events have equal probability. We verify
PAl=1=1-PlA]=1-1.

The composition of the urn is: (a), (a), (b), (b), (ab), (ab), (ab), (ab). P[A] = 6/8,
P[B] = 6/8, P[AB] = ng/nr = 4/8 is not equal to P[A]P[B] = 9/16. Therefore A and B
are not independent.

Let n;,i = 1,2 represent the outcome of the ith toss. Since the tosses are independent:

11
P[nl,ng] B P[nl]P[TLQ] B 6 . 6
Plny+ny="Tn1 =3] = Plne =4|ny = 3]
P[n; = 3,n9 = 4]
Plny = 3]
Plny = 3]P[ng = 4]
P[n1 = 3]
(because tosses are independent)
1
6
Clearly
4 26 1
Then P[AB] = P[{pick one of two red aces in 52 cards}] = . Is P[AB] = P[A]P[B]? Now
2 41
= P[A]P[B],

so, yes A and B are independent events.

Since it is a fair die, the successive tosses are independent with probability p = 1/6 for each
face. From the provided information, we equivalently want the probability of getting a total
of 5 on the two remaining tosses. This can happen in just 4 equally likely outcomes, i.e.
(4,1), (3,2), (2,3), and (1,4). The desired probability this then 4/36 = 1/9.
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29. We can look at the compound outcomes ¢ = (s1,62) as corresponding to the locations in the

9x9 array
11 21 31 41 51 61 --- 91

12 22 32 42 52
13 23 33 43

14 24 34
16 ---
19 ... ... 99

with 81 equally likely outcomes. We agree to call the sample space for the first experiment
1, the sample space for the second experiment 29, and the compound sample space simply
Q. To get the sum ¥ £ N; + Ny = 7, we need one of the following outcomes

16,25, 34,43,52,61, located on a 45° diagonal in the above table.

So there are 6 favorable outcomes for the event {¥ = 7}. The event {¥ = odd} contains 40
outcomes and the event {¥ = even} contains the remaining 81 — 40 = 41 even-sum outcomes.
Now the joint event {¥ = 7} N {3¥ = odd} = {¥ = 7} since the sum 7 is an odd number. We
can now calculate the needed probabilities

_ 40
- 81

The answer for the first question is then

PH{YE =7}n{¥ = odd}]

P[{% = odd}] ’
= P[{X="7}|/P{X =0dd}], (by above result)
— 6/40.

The next question is to find P[({N1 > 7} x Q2) U (1 x {N2 > 7})|{E > 10}]. For simplicity
of notation, let’s agree to write the compound events { N7 > 7} x Q9 and Q1 x {N2 > 7} as
simply {N; > 7} and {N2 > 7}, respectively, for the rest of this calculation. So we must
count the relevant number of outcomes from the above 9 x 9 array, where the various sums are
found on 45° diagonals. For the event {3 > 10}, we count 36 outcomes. For the joint event
({N1 > TFU{Ny > 7})N{X > 10}, we find it easier to consider the set of outcomes that make
up the remainder of the event {¥ > 10}, i.e. the event {N; < 7}N{N2 < 7}N{¥ > 10} which
is equal, in words, to the event N1 < 7 and Ny < 7 and ¥ > 10°’. We could call this the
complement with respect to {¥ > 10} of the event ({ N7 > 7T}U{Ny > 7})N{¥ > 10}. Anyway,
we find from the 9 X 9 array that the number of outcomes in {N; < 7}N{Ny < 7})N{X > 10}
is composed of the following 10 cases: >, =11 =64+5=54+6=7+4 =4+7 and
> =12=5+7=7+5=6+6 and > =13=64+7=7+4+6 and ), =14 =T7+4T.
So we subtract these 10 outcomes from the 36 outcomes in the event {¥ > 10} to obtain
26 outcomes in the compound event ({N; > 7} U {N2 > 7}) N {¥ > 10}. The relevant
probabilities are then

and P[{S =7} =

PH{X = odd}] a1

PH{Y = T}I{E =odd}] =

(by definition)

PS> 10} =20 and PI({N > T}U{N; > 7)) N {S > 10)] = 5.
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The desired conditional probability is then

26/81 26
36/81 36

Finally to compute P[{¥X =odd}|{N; > 8}], we proceed as follows. For the combined
experiment, we know there is only one possibility for N; > 8 and that is N; = 9, along with
any value for Na. Thus there are 9 outcomes in the compound event {N; > 8}1, so that it’s
probability is 9/81. Now the joint event {¥ =odd} N {N; > 8} = {N; = 9} N {¥ =odd} =
{(9,2),(9,4),(9,6), (9,8)} with four outcomes. Thus since all outcomes are equally likely, we
have

PI{Ny > T} U {Ny > TH{Z > 10}] = ~ 0.72.

PUE = odd} N {N; > 8}] = %

The desired conditional probability is then
P[{¥ =odd} n{N; > 8}]
P[{Ny > 8}]

PH{Y = odd}|{N; > 8} =

4/81 4
= —— =_-~044.
9/81 9
30. We are given that P[D] = 0.001, where D is the event ’disease is present.”. Let T denote the
event ’'test is positive,” so that T is the event ’test is negative.” We are additionally given
P[T|D] =1 and P[T|D¢] = 0.005. We are asked to compute P[D|T], i.e. the probability that
‘disease is present given the test is positive.” We use Bayes’ rule and Theorem as follows

P[DT]

PIDIT) = 5

PIT|DIPD]
P[T|D|P[D] + P[T|D¢|P[De]
1 x 0.001

1 x 0.001 + 0.005 x 0.999

1
= —— = 0.167.
144.995 0167

Thus in only about 17% of the cases will a positive test result actually confirm that you suffer
from the disease. The other 83% of the time you will be needlessly worried!

31. Let S; denote the set of occupations and let Sy denote the set of interests and/or hobbies.
Then

S1 = {’office manager’, ’engineer’, ’doctor’, ’teacher’, ...},

So = {’nat. defense’, ’books’, 'music’, ’cooking’,...}.
Let X denote Henrietta’s occupation and Y her interests. Then

P[X = office manager’, Y = 'nat. defense’]
= P[X =office manager’| P[Y" = 'nat. defense’| X = ’office m
< P[X = office manager’],

since 0 < P[Y ='nat. defense’| X =’office manager’] < 1.

'Remember, we decided above to write simply {N; > k} for the compound event {N; > k} x Q. This since, in
this problem, we only compute probabilities for events in the compound experiment.
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32. Directly from the problem statement

PIX
PIX

3 = 3.P[X=1
2] = 2-PX=1

B
]
But we also know P[X = 3] + P[X = 2] + P[X = 1] = 1 which is always true by axiom 2
P[Q] =1. Therefore P[X =1] =1/6, P[X =2] =1/3, and P[X = 3] =1/2. Using Bayes’
Theorem, we then compute

PlY = 11X = 1]P[X = 1]

PX=1Y=1] = 3 . ‘
S, PIY = 11X — i P[X =1
_ (1—-a)1/6
ICETIE R
- 11—«
l—a+pB+3y
33. Let
A %2 {examinee knows},
B % {examinee guesses}, and
C £ {getting right answer} .

Then P[A] =p,P[B] =1—p, P[C|A] =1, and P[C|B]=1/m. So

plajc) = ZCAPA [C]‘f[léf 4]
1-p
P[CIA]P[A] + P[C|BIP[B
p
P+ 5(1—p)
__mp
mp+ (1 —p)

34. There are N contestants and only one most beautiful. Hence

P[{pick most beautiful}] = 1/N.

35. Let
A £ {random drawn chip € A},
B 2 {random drawn chip € B}, and
C £ {random drawn chip € C}.

Also, let D = {random drawn chip is defective}. Then

P[D] = P[D|A]P|A] + P[D|B]P[B] + P[D|C|P|C]
= 0.05x0.25+0.04 x 0.35+0.02 x 0.40
0.0345.
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Hence

~ P[D|A]P[A]  0.05% 0.25 .
PIAID] = PO 0B 0.363

~ P[D|B|P[B]  0.04 % 0.35 .
P[B|D] PO~ 00385 0.406

~ P[D|C|P[C]  0.02 x 0.40 .
PICID] = [ ]’3[1])] ] _ Cos = 0232

36. From the example
k. N

We set © 2 k/N and construct the following table.
PO = [P
0.0 0.0 0.5 | 0.346
0.1]0.23 | 0.6|0.31
0.2]032 | 0.7]0.25

0.3 10361 0.8]0.18
0.4 0367 | 09| 0.10

The peak is quite shallow, therefore the choice of k is not critical near the peak.

37. (a) If we associate the 103 villagers with r = 103 balls and the n = 30 tents with 30 cells,
this becomes a classical occupancy problem.

(b) The result is given by Eq.1.8-6, which is repeated here as

n+r—1 _ (30+103—-1
G
132!
103!29!"

r—1 103 —1
(r - n> - (103 - 30>
102!
731201"

To obtain numerical evaluations of these factorial expressions, one might want to use
Stirling’s formulas:

(¢) The result is

nl & (2m)1/2p" /2,

38. The most natural set of outcomes here are the strings (or vectors) of length r, indicating
where each ball has landed. There are n” such strings. They are all equally likely. The
number of favorable outcomes would be r! since there are r choices for the first preselected
location, r — 1 choices for the second location, etc. The desired probability is then P = r!/n".

Now, since the balls are indistinguishable, we could have considered the so-called distinguish-
able outcomes, ( " +:: -1 ) in number, however from the description of the experiment in
the problem statement, they would not all be equally likely. So we could not rely on classical

theory then to give us the probabilities of these outcomes.



14

39. As in problem 1.38, the number of favorable ways is r!. However, the total number of ways

1S no

t n” since cells can at most hold one ball. For the first ball, there are n cells; for the

second ball, n — 1 cells, etc. Thus

Thus

40. (a)

Nr = n(n—=1)---(n—r+1)

Let the tribal leaders be the cells and the rifles be the balls. Then the three tribal leaders
collecting the five rifles is the analog of putting five balls into three cells.

These are the distributions shown in non-bold. There are fifteen such distributions.

Careful here! If we count only the outcomes in bold we shall get the wrong answer i.e.,
6/21=0.286. The reason this answer is wrong is that the outcomes in the columns are
not equally likely. The correct answer is computed using Eq.(1.8-9) i.e.,

The probability that a specified number appears on the face of a dice is 1/6. Hence the
probability of getting three specified numbers is or 1 in 216. Hence if you win you should
get $216 for every dollar bet. But the casino payout is only $180:1.

The face value of the first dice is irrelevant. The probability that the second dice matches
the first is 1/6. The probability that the third dice matches the first is 1/6. Hence the
probability of getting three unspecified matches is or 1 in 36.

Let F; denote that dice 7,7 = 1,2, 3 shows a specified number. Then the probability that
(at least) two specified numbers appear is

P[E1E2E§] + P[ElEgEg] + P[EgEQEﬂ + P[ElEgEg]
= 3IX=X=xX LIV
B 6

= 0.0741,

- X =X
* 6

o
o
=
o

or about 1 in 14. So per dollar bet you should get $14 but the casino payout is only $10.

i. The next six parts can be solved by enumeration i.e., counting. However there is a

systematic procedure based on the mathematical operation of convolution that can yield
all of the answers from reading a graph. The details are given in Example 3.3.-5.
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d. Refer to the table below:

Dice No.l |1 2 3 4 5 6
Dice No.2 |1 2 3 4 5 6
DiceNo.3 |1 2 3 4 5 6

We note that there are only three ways of getting a 4: 14+142; 1+2+1,24+141. Hence
the
probability that the sum equals 4 is 3/(6 x 6 x 6) = 1/72. Thus the fair payout should
be 1:72 instead of 1:60.

e. The number of ways of getting a 5 is 6: 3+1+1; 1434+1; 14+14+3; 24+2+1; 24+142; 1+2+2.
Hence the probability that the sum equals 5 is 6/(6 X 6 x 6) = 1/36. A fair payout
would be 1:36 instead of 1:30.

f.-i. follow the same enumeration.
j. Let’s think of this a series of throws. The probability that the first throw matches one
of the two specified numbers is 2/6. The probability that the next throw matches a
specified number is 1/6. The last throw should not match either of the numbers. Its

probability is 4/6. In a throw of three dice this can happen in three ways. Hence the

probability is 3 x % X % X % =1/9 or 1:9. But the payout is only 1:5.

For N packets there are N! ways of arranging themselves, but only one way of doing it
correctly. All the packet arrangements are equally likely. Hence
P[{correct reassembly}] = 1/N!
= (3628800)"' for N = 10,
~ 276 x 1077

For three packets, there are six different arrangements (3-2-1 = 6), but only one correct one.
Hence on any try

Ps = P[{success}]| and Pp = P|[{failure}]
1 )
—- = —1-Pg=2.

6 7%

For a first correct reassembly on the n'* try, there must be n — 1 failures followed by on
success on the n'™ try, thus
1/5 n—1
Pn)y==1(= n>1.

We note in passing that this is a valid PMF, i.e. it sums to one over its support [1,00). To
find the smallest n such that

n k—1
6 (5)

- > 0.95,

P 6 \6

we note that the complementary event is no successes in n trials, with probability 1 — (%)n

Thus we seek instead the smallest n such that 1— (%)n <1-0.95=0.05. Thusn ~ 11?1((%%’)) =
16.5. So the answer is n = 17.
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44.

k=0 =0
= (p+q)"
= (p+A-p)"
- 1"=1

45. (a) The probability that a BM gets destroyed is

1 — P[{both AMM miss}] = 1-(0.2)(0.2)
= 0.96.

Hence for all BMs to get destroyed, we need six wins in six tries:

(2)(0.96)6(0.04)0 = (0.96)8
~ 0.783.

l

(b) P[{at least one BM gets through }| = 1 — P[{all are destroyed}| ~ 1 —0.783 = 0.217.
()

P[{exactly one gets through}|

<§> (0.96)°(0.04)!

= 6(0.96)°(0.04)
~ 0.196.

46. We want to compute

P[{only one BM gets through}|{target destroyed}|
= P[{only one BM gets through}|{at least one BM gets through}]
P[{only one BM gets through}, {at least one BM gets through}|
P[{at least one BM gets through}]
P[{only one BM gets through}|
P[{at least one BM gets through}]

0.2
= o= 0.922.
47. Let
A = {Event that a chip meets specs},
B = {Event that a chip needs rework}, and

C = {Event that a chip is discarded}.

We have P[A] = 0.85, P[B] = 0.10, and P[C] = 0.05. The multinomial law applies here!
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(a)
: 10! 10 0 0
P[{all chips meet specs}] = 10'0'0‘(0‘85) (0.10)7(0.05)
~ 0.197.
(b)

1 — P[{no discards}] — P[{one discard}|

P[{ two or more discards}|] =
A
= P

Now P[{a chip is discarded}| = P[C] = 0.05, so P[C] = 0.95, thus

P, = 1- (10()) (0.95)19(0.05)" — <110> (0.95)°(0.05)*

1—-0.599 — 0.315 = 0.086.

12

10!

P[{8 meet specs, 1 needs rework, 1 discard}] = m(0.85)8(0.10)1(0.05)1
= 0.45(0.85)%
~ 0.123.
48. Let
A = {Event that call is to report fire emergency},
B = {Event that call is to police}, and

C = {Event that call is for ambulance}.

We have P[A] = 0.15, P[B] = 0.60, P[C] = 0.25, and the sequence 02030202030102030202
contains 1 A, 6 Bs and 3 Cs.

(a) PIBCBBCABCBB] = 0.15! x 0.60° x 0.25% = 1.1 x 10~*
(b) The number of distinguishable sequences is just the multinomial coefficient

10! _10x9x8xT7

= =84
6!3!1! 3x2x1 840

(c) The probability that the 10 calls involve six calls to the police, three for ambulance and
one to the subdepartment:

10!
6!3!1!

% 0.15" x 0.60% x 0.25% = 0.092

49. We use the Poisson approximation to the binomial: Eq. 1.10-2, with p = Wloo =103, n = 100,
and np = 0.1. Then

P[{at least one diamond is found}] = 1— P[{no diamonds are found}]
N 0!

~ 1-09=0.1.
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50. Use Eq. (1.10-7) from the text with t =0, ¢t + 7 = 10, and A(7) as given. This gives

10
/ [1— e/ dy = 10! = 3.68.
0

Thus,
1
Pk clicks in 10 seconds | = 673'685(3.68)]{:.

51. If all the tickets are in one lottery, then P['win’] = % = % If one ticket in each of 50
lotteries, the the probability of a win in any one lottery is p = Wlov but we have 50 chances
to win. Hence P[’at least one win’] =1 — P['no win’], where

50
P['no win’] = < 0 >p0(1 —p)®°
0
= 50Y (L (ﬁ)fﬂ
0 100 100
= 0.605.

Hence, taking one ticket in each of 50 lotteries, P[’at least one win’] =1 —0.605 = 0.395 < %

52. If 50 tickets in one lottery, then E[G1] = Gip = 100 - (3) = 50. If one ticket in each of 50
lotteries, we would have

50 i 50—
50\ [ 1 99
49 4 49—’
50 49\ / 1 99
- 20 1) (2 ith i —i—1
1000 (;)(ﬂ) (100) <100> ) .

- %100 x 1, since the sum in parentheses is 1,

= 30.

53. (a) A closed circuit can occur as
(AgAs U AsAs) AjAg = A1 Ay AsAs U A1 AsAs As.
(b) Now in general P[AU B] = P[A] + P[B| — PAB]|, thus
P[{at least one closed path}] = P[AjA2A4A¢] + P[A1A3A5Ag] — P[A1 A2 A3 AyAs5Ag)
2p* —p°

1
= 2p*(1- 51’2)-

54. (a) Events associated with disjoint time intervals, under Poisson law, are independent. The

number of cars arriving at a tollbooth in the time interval (0,7) at a rate of A per minute

is such that P[k cars arrive in (0,7")] = e_’\T%. Let us define the events:

{ my cars arrive in (0,t1)},

{ ng cars arrive in (t1,7)}, and

QW =
> 1> e

{ m1 + na cars arrive in (0,7")}.
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We are asked to find P[A|C]. From the definition of conditional probability, we know

that this equals Pg?ﬁ]. The event AC' is the event that n; cars arrive in (0,¢;) and

n1 + na cars arrive in (0,7"). This is the same as saying that n; cars arrive in (0,¢1) and
ng cars arrive in (¢1,7), which is nothing but the event AB. Therefore, AC = AB. But
from the Poisson law (given), we know that P[AB] = P[A]P[B], because A and B are
events on disjoint time intervals. Therefore,
P[AC P[AB P[A|P[B
pigic) _ PIACL  PIAB] _ PLAPI
picl P[C] P[]
()\tl)'lllef)\tl ()\(T_tl))'nzefk(Tftl)
n1! n2!
()\T)n1+n26—)\T
(n1+n2)!
t?l (T — tl)nz (nl + TLQ)'
Tritne ni!ng!

and that is independent of A.
b. Substituting 7' =2, t; = 1, and n1; = ng = 5, we get

10! 1
P[5 cars in (0,1)|10 cars in (0,2)] = S50 0.25

55. The probability of a patient dying without the monitoring system is:
Pp =0.1/2=0.05
The probability of a patient dying with the monitoring system is:

P(B, M) = P(B)P(M) = 0.05 x 0.1 = 0.005

B and M are independent events.
Thus, Prof. X’s argument is wrong.

56. (a) At each attempt, the probability of successful transmission is p?V. The repeated exper-
iments are Bernoulli trials. Now the event S(m) ={at least one successful transmission
occurs in m attempts}. Also define F(m) = {no successful transmission occurs in m
attempts}. Then these events are mutually exclusive, so

P(m) £ P[S(m)]=1- P[F(m)]
= 1- ?)(pN)O(l—pN)m
= 1—(1-p")™

(b) For an individual receiver, we need the probability of at least one successful transmission
in m attempts (trials). This is just the answer to part a, with p substituted for pV,
i. e. 1—(1—p)™. Next consider the event Sp(m) ={For every receiver, at least one
successful transmission occurs in m attempts}. We have

Pp(m) £ P[Sp(m)] = [1 — (1 —p)"]",
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o7.

58.

since there are N independent receivers.
If p=0.9,N =5, and m = 2, then,

P(2) ~0.832 and Pp(2) ~ 0.951.

The sample space for the compound experiment is
Q= {(1}1,:172, ...,:L‘lo()) 12 < ZT; < 12, 1 < 1 < 100}

For the individual experiment with the two die, we can write the sample space as the locations
(&1,&5) in the 6x6 table

(€&) [ 1]2]3]4]|5]6]

1 213|456 |7
2 3145|678
3 415161 78] 9|,
4 5167819 |10
5 6(7|8] 9 |10]11
6 71819]10( 1112

where we have entered in each cell the sum of the die’s upward faces. Now we set the event
A 2{the sum is 7} and find P[A] = 6/36 = 1/6 £ p. As for the compound experiment
consisting of N = 100 tries, it is seen to be Bernoulli trials with n = 100 and p = 1/6. So the

answer for "10 seven’s in 100 tries’ is b(7;100,1/6) = < 11000

this simply using the Poisson approximation with @ = np = 100/6. Then

pl%(1 —p)%. We can evaluate

al[)efa
10!
(100/6)"° e~100/6

10!
0.0264.

P[10 seven’s in 100 tries] =

Q

b) We do part (b) first. From the landlord’s viewpoint, the following applies. If lease
includes free repairs, then the cost of the two "Cloggers" versus one "NeverFail" is the same,
so it doesn’t matter. If repairs are not free and are the same for the "Cloggers" as for the
"NeverFail," then clearly the "NeverFail" is the cheaper to lease.

a) From the tenants’ point of view:

P[{at least one "Clogger" on}] = 1— P[{both fail}]
= 1-(0.4)2
0.84, while
P[{"NeverFail" on}] = 0.80
< 0.84.

Therefore, the two "Cloggers" are better since at least one of them will be working 84% of
the time.
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60.

61.

62.
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This problem typifies the faulty reasoning exhibited by many people not familiar with prob-
ability and, in particular, the idea of independent events. While it is true that P[{2 bombs
on board}] = 1074, the issue is P[{terrorist bomb on board}|{"nervous" has a bomb on
board}] = P[{terrorist bomb on board}] = 1072, since the events A = [{terrorist bomb on
board}] and B = [{"nervous" has a bomb on board}| are independent. Hence P[A|B] = P[A];
therefore, no protection!

Let E = {event of successful transmission on short path};F = {event of successful transmis-
sion on a long path}. Then P[{successful transmission}] = 1 — P[EF¢] and P[E‘] =1 — p3,
while P[F¢] = 1 — p°, where p £ 1 — q. Therefore

P[{successful transmission}] = 1— P[E°F]
= 1-(1-p)1-p")
P+ —p

In this case the telephone company might find the union directive unreasonable. Here is
why:

o0

720 x 8)"

Plovertime] = E # —720x8
n=5761

Q

7=l

(by the Gaussian approximation to Poisson),

where
5761 — 5760 — 0.5 oo — 5760 + 0.5
lh = and [y .
5760 5760

Hence

1.2
dx

M

1
Plovertime] ~ —
\/ﬁ/o
1
= erf(o0) = 5

So approximately half the time, Curtis will collect overtime.

The sample space for the compound experiment is
Q= {($1,£L‘2, ...,1‘80) 12 S €Ty S 4, 1 S ) S 80}

For the individual experiment with the two die, we can write the sample space as the locations
(&1,&5) in the 2x2 table

(€.6) || 1] 2]
1 [[2]3].
2 |34

where we have entered in each cell the sum of the coin’s upward sides. Now we set the event
A £{the sum is 2} and find P[A] = 1/4 £ p. As for the compound experiment consisting of
N = 80 tries, it is seen to be Bernoulli trials with n = 80 and p = 1/4. So the answer for '10
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63.

64.

80
10
simply using the Poisson approximation with a = np = 80/4 = 20. Then

two’s in 80 tries’ is b(10;80,1/4) = ( ) p%(1 —p)™. We can evaluate an approximation

, al0e—a

P[10 two’s in 80 tries| = T
B (20)10 20

10!

~ 0.0058.

Incidently the exact answer for the binomial 5(10;80,1/4) is 0.0028. The Poisson approxi-
mation is only marginal here since p = 1/4 is not really << 1.

Since arrivals in disjoint intervals are independent under the Poisson law, it follows that we
equivalently want the probability of 5 cars arriving in the second 2 minutes. This is given as

(QQ)E o2\

PI[5 cars in 2 minutes] =

Unfortunately, very small. The reader should recognize that this is an occupancy problem
with the candies being the "balls" and the students being the "cells." The appropriate formula
is Eq. 1.8-9, which gives the probability that no cell is empty. Hence, with r = 15,n = 10,

10 :
1 .
P[{no student is without a candy}] = Z ( i0> (1)1 - %0)15
i=0

~ 0.05.
A MATLAB function to do this problem is as follows:

function [tries,prob] = occupancy(balls,cells)

% Here #balls=r and #cells=n. This function then
% calculates the answer to the occupancy problem in
% Example 1.8-5, specifically Eq. 1.8-9. This function
% is used in the solution to Problem 1.64 .

%

tries=1:balls; prob=zeros(1,balls);

c=zeros(1,cells); d=zeros(1,cells);
term=zeros(1,cells);

for m=1:balls

for k=1:cells
c(k)=((-1)"k)*prod(1:cells)/(prod(1:k)*prod (1:cells-k));
d(k)=(1-(k/cells)) ~m;

term(k)=c(k)*d(k);

end

prob (m)=1+sum(term);

end

plot(tries,prob)

xlabel("’number of balls r’);

ylabel("P[E"c]’);

title(’probability that no cell is empty’);

end
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Two example runs follow. The first is for r = 15,n = 10, yielding the answer to this problem
at n = 10. The second run is for a larger case with » = 100 and n = 20.

probability that no cell is empty probability that no cell is empty

0.0s 0s

o8-

0041
07r

06+

003f =100,n=20

=15 n=10 05r

002 04r

PIE®]
PIE®]

03r
0o1p
02r

01r
ot

0

oo . L a1 L L . . . . . . .
a 5 10 15 0 10 0 30 40 a0 B0 70 80 20 100
nurmber of balls r number of balls r

65. These are repeated Bernoulli trials resulting in the Binomial distribution with n = 1000 and
p = 0.001. Let X; be the individual random variables, taking on value 1 for an erroneous
line and 0 for an error-free line. Then we can write the sum or total of the errors as

Z = zn:Xi.
i=1

Then Z is Binomial with p, = np = 1 and 022 = npq = 0.999. We can use the Poisson
approximation to the Binomial with a = np = 1 here. Then

P2 < Z<1000] = 1 — Pz(0) — Pz(1)

~ 1l—e %*—qge @
= 1-2¢1

= 0.264.

The CLT approximation gives a Normal distribution with mean g = 1 and ¢ = +/0.999 =
0.9995. However, it is not as accurate here since the mean p is only approximately one stan-
dard deviation away from 0, the minimum value of a Bernoulli random variable. Calculating
the CLT approximate answer, we find

z—1

L 2
e 2 [\/W] dz

P[2 < Z < 1000]

%

1 1000
V21 x 0.999 /2

1 /+°° 1.2
— e 2% dx
V21 J1.0005
= 0.5 —erf (1.0005)

= 0.5-0.341

= 0.159, not very accurate here.

%

66. This is a classic problem and the solution is unexpected. Let A = {event that no two people
have their birthdays on the same date} Let B = {event that at least two people have their
birthdays on the same date}. Then B = A€ and

P[B] = PlA]
= 1_P[A]a



where

no. of ways A can occur

no. of all possible outcomes
na

Y

nr
where n4 = 365(365 — 1)(365 — 2) -+ (365 — (n — 1)) and ny = (365)2. Thus

na

1 2 n—1 1
= - _ = _ — 29
1 (1 365) (1 365) <1 365 > 27

Taking logarithms, we have

1 2 n—1
_ - _ — ?
Inl—+1In <1 365) +In (1 365) 4+---+1In (1 365 > 0.77.

Then, upon using In(1 — z) ~ x for x small, when n/365 is small, we get

_(1+2+~--+(n—1)> n(n—1)

365 2(365)
~ —0.7.
So we must set ( )
nn—1
2(365) 07

and solve for n, resulting in the quadratic equation
n?—n—>511=0,

whose positive root is n = 22.6. Rounding up to the next integer, we get the answer at just
23 people necessary for the probability to be one-half or greater that at least two people will
have their birthday on the same date.

. By the problem statement, we have a Binomial probability law b(k; N, p) with N = 10 and
p = Pldefect] = 0.02. So the probability of more than one defect in the sample is given as

10
P[more than 1 defect] = Zb(k; 10,0.02)
k=2

= 1-) b(k;10,0.02)
k=0

= 1-(0.98) — <110> (0.02)(0.98)°
= 1—-(0.98)' —0.2(0.98)°

= 1-1.18(0.98)°
= 0.0162

1
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68. The programming of this problem is quite simple as it requires applying a random number
generator N times for each realization ... that’s basically it. The hard part is the search for
a percolating path. The lattice contains both branches and loops. Thus it is netither tree,
nor graph. The first decision is to define a conducting path, and there are two choices:

conduction allowed conduction allowed

through diagonal elements only through hor. and vert. elements

Two choices for conducting paths.

The time-consuming part is the search. Thus if you come to a node (junction) and the path

you choose doesn’t lead anywhere, you must be careful to return to the note and try the other
path.

17

An Example.

A possible path is IABCE2. Note the dead-end at D and the possibility of endless looping if

you are not careful. Since NV < 50, relatively simple search techniques should work. A good
MS thesis. Good luck!
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69.

70.

Let:

= {door picked by you},
{door picked by MC},

= {remaining door}, and

D = {door that leads to Rexis}.

Q= >
I

Then AD = {door picked by you leads to Rexis}, BD = {door picked by MC leads to Rexis},
and C'D = {remaining door leads to Rexis}. Then

P[AD = % and P[BDUCD]= %
But, since BDNCD = ¢,
P[BD]+ P[CD] = P[BDUCD)]
2
37

and the MC always chooses the wrong door, so that P[BD] = 0, and hence P[CD] = %
Therefore, you should switch to door C, as it will double your probability of winning the
Rexis!

(a) This is Bernoulli trials. Thus P,[E] = (140) (%)10 and P[E| = (1f)p4(1 —p)S.
(b) The likelihood ratio is given as

L = Pi[E]/RE]




