Solutions for Chapter 2
Intelligent Agents

2.1 This question tests the student’s understanding of erwiemts, rational actions, and
performance measures. Any sequential environment in wieishrds may take time to arrive
will work, because then we can arrange for the reward to ber‘twe horizon.” Suppose that
in any state there are two action choicegndb, and consider two cases: the agent is in state
s attimeT or attimeT' — 1. In states, actiona reaches state’ with reward 0, while action

b reaches state again with reward 1; irs’ either action gains reward 10. At tinié — 1,

it's rational to doa in s, with expected total reward 10 before time is up; but at tilet's
rational to dob with total expected reward 1 because the reward of 10 cammatbbained
before time is up.

Students may also provide common-sense examples fromfeahvestments whose
payoff occurs after the end of life, exams where it doesn’kemsense to start the high-value
question with too little time left to get the answer, and so on

The environment state can include a clock, of course; thesdd change the gist of
the answer—now the action will depend on the clock as wellrathe non-clock part of the
state—but it does mean that the agent can never be in the sat@dvece.

2.2 Notice that for our simple environmental assumptions wedmes worry about quanti-
tative uncertainty.

a. It suffices to show that for all possible actual environrsdne., all dirt distributions and
initial locations), this agent cleans the squares at leafdsd as any other agent. This is
trivially true when there is no dirt. When there is dirt in timitial location and none in
the other location, the world is clean after one step; no tg@mdo better. When there
is no dirt in the initial location but dirt in the other, the vidis clean after two steps; no
agent can do better. When there is dirt in both locationswbed is clean after three
steps; no agent can do better. (Note: in general, the conditated in the first sentence
of this answer is much stricter than necessary for an agdre tational.)

b. The agent in (a) keeps moving backwards and forwards eventhe world is clean.
It is better to doNoOp once the world is clean (the chapter says this). Now, since
the agent’s percept doesn't say whether the other squaleds,dt would seem that
the agent must have some memory to say whether the othereshjaaralready been
cleaned. To make this argument rigorous is more difficult—dgample, could the
agent arrange things so that it would only be in a clean lefasgwhen the right square
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was already clean? As a general strategy, an aggmtise the environment itself as

EXTERNAL MEMORY a form of external memory—a common technique for humans who use things like
appointment calendars and knots in handkerchiefs. In triscplar case, however, that
is not possible. Consider the reflex actions [fdr Clean] and[B, Clean]. If either of
these isNoOp, then the agent will fail in the case where that is the inipiaicept but
the other square is dirty; hence, neither canNag)p and therefore the simple reflex
agent is doomed to keep moving. In general, the problem witlx agents is that they
have to do the same thing in situations that look the same) e¥ven the situations
are actually quite different. In the vacuum world this is g bability, because every
interior square (except home) looks either like a squaré ditt or a square without
dirt.

c. If we consider asymptotically long lifetimes, then it iseat that learning a map (in
some form) confers an advantage because it means that thecageavoid bumping
into walls. It can also learn where dirt is most likely to agulate and can devise
an optimal inspection strategy. The precise details of #poeation method needed
to construct a complete map appear in Chapter 4; methodseiwrirtg an optimal
inspection/cleanup strategy are in Chapter 21.

a. An agent that senses only partial information about theestatnnot be perfectly ra-
tional.
False. Perfect rationality refers to the ability to make djolecisions given the sensor
information received.

b. There exist task environments in which no pure reflex agenbehave rationally.
True. A pure reflex agent ignores previous percepts, so ¢astain an optimal state
estimate in a partially observable environment. For exampbrrespondence chess is
played by sending moves; if the other player's move is thestuipercept, a reflex agent
could not keep track of the board state and would have to respm say, “a4” in the
same way regardless of the position in which it was played.

c. There exists a task environment in which every agent ismatio
True. For example, in an environment with a single statel ¢hat all actions have the
same reward, it doesn’t matter which action is taken. Moreegaly, any environment
that is reward-invariant under permutation of the actionissatisfy this property.

d. The input to an agent program is the same as the input to thetdgaction.
False. The agent function, notionally speaking, takes pstithe entire percept se-
quence up to that point, whereas the agent program takesitient percept only.

e. Every agent function is implementable by some program/maaombination.
False. For example, the environment may contain Turing mashand input tapes and
the agent’s job is to solve the halting problem; there is anéfyinctionthat specifies
the right answers, but no agent program can implement it.tiAarcexample would be
an agent function that requires solving intractable pnobilestances of arbitrary size in
constant time.
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MOBILE AGENT

2.4

Suppose an agent selects its action uniformly at random therset of possible actions.
There exists a deterministic task environment in whichagent is rational.

True. This is a special case of (c); if it doesn’t matter whaciion you take, selecting
randomly is rational.

Itis possible for a given agent to be perfectly rational irotdistinct task environments.
True. For example, we can arbitrarily modify the parts of gmironment that are
unreachable by any optimal policy as long as they stay uhedse.

. Every agent is rational in an unobservable environment.

False. Some actions are stupid—and the agent may know thikdé a model of the
environment—even if one cannot perceive the environmexté st

. A perfectly rational poker-playing agent never loses.

False. Unless it draws the perfect hand, the agent can allwagsf an opponent has
better cards. This can happen for game after game. The tataement is that the
agent’s expected winnings are nonnegative.

Many of these can actually be argued either way, dependirtheitevel of detail and

abstraction.

A.
B.

IO 7 m

2.5

Partially observable, stochastic, sequential, dynagoatinuous, multi-agent.

Partially observable, stochastic, sequential, dynagoatinuous, single agent (unless
there are alien life forms that are usefully modeled as ajent

. Partially observable, deterministic, sequentialistdiscrete, single agent. This can be

multi-agent and dynamic if we buy books via auction, or dyitaiffiwe purchase on a
long enough scale that book offers change.

. Fully observable, stochastic, episodic (every pointeigasate), dynamic, continuous,

multi-agent.

. Fully observable, stochastic, episodic, dynamic, ommttiis, single agent.

. Fully observable, stochastic, sequential, static,inants, single agent.

. Fully observable, deterministic, sequential, statntimuous, single agent.
. Fully observable, strategic, sequential, static, @sgrmulti-agent.

The following are just some of the many possible definitidreg tan be written:

Agent an entity that perceives and acts; or, one tteat be vieweds perceiving and
acting. Essentially any object qualifies; the key point &swway the object implements
an agent function. (Note: some authors restrict the terpréagramsthat operateon
behalf ofa human, or to programs that can cause some or all of their woden on
other machines on a network, asnmobile agents)

Agent function a function that specifies the agent’s action in responsedrygossible
percept sequence.

Agent program that program which, combined with a machine architecturgle-
ments an agent function. In our simple designs, the progekmsta new percept on
each invocation and returns an action.
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« Rationality a property of agents that choose actions that maximize ¢ixpected util-
ity, given the percepts to date.

« Autonomy a property of agents whose behavior is determined by their experience
rather than solely by their initial programming.

* Reflex agentan agent whose action depends only on the current percept.

* Model-based agentan agent whose action is derived directly from an internatet
of the current world state that is updated over time.

» Goal-based agentan agent that selects actions that it believes will achesymicitly
represented goals.

« Utility-based agent an agent that selects actions that it believes will maxarttze
expected utility of the outcome state.

« Learning agentan agent whose behavior improves over time based on itgiexpe.

2.6 Although these questions are very simple, they hint at soemg fundamental issues.
Our answers are for the simple agent designsstatic environments where nothing happens
while the agent is deliberating; the issues get even moerdsting for dynamic environ-
ments.

a. Yes; take any agent program and insert null statementslthaot affect the output.

b. Yes; the agent function might specify that the agent print when the percept is a
Turing machine program that halts, afidse otherwise. (Note: in dynamic environ-
ments, for machines of less than infinite speed, the ratiagaht function may not be
implementable; e.g., the agent function that always playgnaing move, if any, in a
game of chess.)

c. Yes; the agent’s behavior is fixed by the architecture andnam.

d. There are2™ agent programs, although many of these will not run at alloté@N Any
given program can devote at mosbits to storage, so its internal state can distinguish
among onh2™ past histories. Because the agent function specifies adi@sed on per-
cept histories, there will be many agent functions that oaibe implemented because
of lack of memory in the machine.)

e. It depends on the program and the environment. If the emwiemt is dynamic, speed-
ing up the machine may mean choosing different (perhapsmpeittions and/or acting
sooner. If the environment is static and the program paydteat&on to the passage of
elapsed time, the agent function is unchanged.

2.7

The design of goal- and utility-based agents depends ontthetugre of the task en-
vironment. The simplest such agents, for example thoseaptelns 3 and 10, compute the
agent’s entire future sequence of actions in advance baftneg at all. This strategy works
for static and deterministic environments which are eifay-known or unobservable

For fully-observable and fully-known static environmeatpolicy can be computed in
advance which gives the action to by taken in any given state.
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function GOAL-BASED-AGENT(percept) returns an action
persistent state, the agent’s current conception of the world state
model, a description of how the next state depends on currentatat@ction
goal, a description of the desired goal state
plan, a sequence of actions to take, initially empty
action, the most recent action, initially none

state « UPDATE-STATE(state, action, percept, model)
if GOAL-ACHIEVED(state,goal) then return a null action
if plan is emptythen
plan < PLAN (state,goal,model)
action <« FIRST(plan)
plan «— REST(plan)
return action

Figure S2.1 A goal-based agent.

For partially-observable environments the agent can ceengeonditional plan, which
specifies the sequence of actions to take as a function ofginat'a perception. In the ex-
treme, a conditional plan gives the agent’s response ty@agtingency, and so it is a repre-
sentation of the entire agent function.

In all cases it may be either intractable or too expensiveotopute everything out in
advance. Instead of a conditional plan, it may be better topetge a single sequence of
actions which is likely to reach the goal, then monitor theiemment to check whether the
plan is succeeding, repairing or replanning if it is not. liyrbe even better to compute only
the start of this plan before taking the first action, coritiguio plan at later time steps.

Pseudocode for simple goal-based agent is given in Figure. S30AL-ACHIEVED
tests to see whether the current state satisfies the goat,atoing nothing if it does. PAN
computes a sequence of actions to take to achieve the goisl.might return only a prefix
of the full plan, the rest will be computed after the prefix ¥@euted. This agent will act to
maintain the goal: if at any point the goal is not satisfiediit @ventually) replan to achieve
the goal again.

At this level of abstraction the utility-based agent is nataim different than the goal-
based agent, except that action may be continuously retj(titere is not necessarily a point
where the utility function is “satisfied”). Pseudocode igagi in Figure S2.2.

2.8 The file"agents/environments/vacuum.lisp” in the code repository imple-
ments the vacuum-cleaner environment. Students can eadéynd it to generate different
shaped rooms, obstacles, and so on.

2.9 Areflex agent program implementing the rational agent fianctlescribed in the chap-
ter is as follows:

(defun reflex-rational-vacuum-agent (percept)
(destructuring-bind (location status) percept
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function UTILITY-BASED-AGENT(percept) returns an action
persistent state, the agent’s current conception of the world state
model, a description of how the next state depends on currentatat@ction
utility — function, a description of the agent’s utility function
plan, a sequence of actions to take, initially empty
action, the most recent action, initially none

state « UPDATE-STATE(state, action, percept, model)
if plan is emptythen

plan <— PLAN (state,utility — function,model)

action < FIRST(plan)

plan «— REST(plan)

return action

Figure S2.2 A utility-based agent.

(cond ((eq status ’Dirty) 'Suck)
((eq location 'A) 'Right)
(t 'Left))))
For states 1, 3, 5, 7 in Figure 4.9, the performance measuee$396, 1999, 1998, 2000
respectively.

2.10

a. No; see answer to 2.4(b).

b. See answer to 2.4(b).

c. In this case, a simple reflex agent can be perfectly ratiombke agent can consist of
a table with eight entries, indexed by percept, that spac#ieaction to take for each
possible state. After the agent acts, the world is updatedtza next percept will tell
the agent what to do next. For larger environments, constigi@ table is infeasible.
Instead, the agent could run one of the optimal search #tgosi in Chapters 3 and 4
and execute the first step of the solution sequence. Agaimtamal state isequired
but it would help to be able to store the solution sequendeaalsof recomputing it for
each new percept.

2.11

a. Because the agent does not know the geography and peroailyelocation and local
dirt, and cannot remember what just happened, it will getlisfarever against a wall
when it tries to move in a direction that is blocked—that isless it randomizes.

b. One possible design cleans up dirt and otherwise movesnalyd

(defun randomized-reflex-vacuum-agent (percept)
(destructuring-bind (location status) percept
(cond ((eq status ’Dirty) 'Suck)
(t (random-element ’(Left Right Up Down))))))
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Figure S2.3  An environment in which random motion will take a long timedaver all
the squares.

This is fairly close to what the Roomb¥ vacuum cleaner does (although the Roomba
has a bump sensor and randomizes only when it hits an obstéoeorks reasonably
well in nice, compact environments. In maze-like environtseor environments with
small connecting passages, it can take a very long time teraithe squares.

. An example is shown in Figure S2.3. Students may also wishe@sure clean-up time

for linear or square environments of different sizes, anchjgare those to the efficient
online search algorithms described in Chapter 4.

. A reflex agent with state can build a map (see Chapter 4 faildgt An online depth-

first exploration will reach every state in time linear in teige of the environment;
therefore, the agent can do much better than the simple rafient.

The question of rational behavior in unknown environmesigséomplex one but itis
worth encouraging students to think about it. We need to kawee notion of the prior
probability distribution over the class of environmentall this the initialbelief state
Any action yields a new percept that can be used to updateditisbution, moving
the agent to a new belief state. Once the environment is aigiplexplored, the belief
state collapses to a single possible environment. Theretbe problem of optimal
exploration can be viewed as a search for an optimal strategye space of possible
belief states. This is a well-defined, if horrendously iotedle, problem. Chapter 21
discusses some cases where optimal exploration is possilgher concrete example
of exploration is the Minesweeper computer game (see EBeiti22). For very small
Minesweeper environments, optimal exploration is feasdthough the belief state
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update is nontrivial to explain.

2.12 The problem appears at first to be very similar; the main dhffiee is that instead of
using the location percept to build the map, the agent haswverit” its own locations (which,
after all, are just nodes in a data structure representiagtidite space graph). When a bump
is detected, the agent assumes it remains in the same loeattbcan add a wall to its map.
For grid environments, the agent can keep track ofats) location and so can tell when it
has returned to an old state. In the general case, howeeeg igno simple way to tell if a
state is new or old.

2.13

a. Forareflex agent, this presentsamditionalchallenge, because the agent will continue
to Suck as long as the current location remains dirty. For an ageattdbnstructs a
sequential plan, ever§uck action would need to be replaced bguck until clean.”

If the dirt sensor can be wrong on each step, then the agett mignt to wait for a
few steps to get a more reliable measurement before deoidhether toSuck or move
on to a new square. Obviously, there is a trade-off becausingadoo long means
that dirt remains on the floor (incurring a penalty), but agtimmediately risks either
dirtying a clean square or ignoring a dirty square (if thesseris wrong). A rational
agent must also continue touring and checking the squareasi it missed one on a
previous tour (because of bad sensor readings). it is noteidietely obvious how the
waiting time at each square should change with each new fDuese issues can be
clarified by experimentation, which may suggest a geneeaidirthat can be verified
mathematically. This problem is a partially observable kéardecision process—see
Chapter 17. Such problems are hard in general, but someaspases may yield to
careful analysis.

b. In this case, the agent must keep touring the squares iitdsfinThe probability that
a square is dirty increases monotonically with the timeesiihgvas last cleaned, so the
rational strategy is, roughly speaking, to repeatedly eteethe shortest possible tour of
all squares. (We say “roughly speaking” because there amplications caused by the
fact that the shortest tour may visit some squares twicegmidipg on the geography.)
This problem is also a partially observable Markov decigioocess.
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