Add, modify, and remove questions. Select a question type from the Add Question drop-down list and click Go to add questions. Use Creation Settings to establish which default options, such as feedback and images, are available for question creation.

Question An investment is the current commitment of dollars over time to derive future payments to compensate the investor for the time funds are committed, the expected rate of inflation and the uncertainty of future payments.
Answer \quad True
Question 3 True/False 0 points \quad Remove

Question The holding period return (HPR) is equal to the holding period yield (HPY) stated as a percentage.
Answer True
\checkmark False

		Add Question Here
Question 4	True/False 0 points	

Question The geometric mean of a series of returns is always larger than the arithmetic mean and the difference increases with the volatility of the series.
Answer True

$$
\checkmark \text { False }
$$

			Add Question Here	
Question 5	True/False	0 points	Modify	Remove
Question The expected return is the average of all possible returns.				
	Answer			

| | |
| :--- | :--- | :--- | :--- |
| Question 6 | True/False Add Question Here |
| $\mathbf{0}$ points | |

Question Two measures of the risk premium are the standard deviation and the variance.

	Question Two measures of the risk premium are the standard deviation and the variance.			
	Answer	True		
		\checkmark False		
			4 Add Q	tion Here
Question 7	True/False	0 points	Modify	Remove
	Question The variance of expected returns is equal to the square root of the expected returns.			
	Answer	True		
		\checkmark False		
			4 Add Q	tion Here
Question 8	True/False	0 points	Modify	Remove

Question The coefficient of variation is the expected return divided by the standard deviation of the expected return.
Answer True
\checkmark False

			- Add Question Here	
Question 9	True/False	0 points	Modify	Remove
Question Nominal rates are averages of all possible real rates.				
Answer True				

		Add Question Here
Question 10 True/False 0 points		

Question The risk premium is a function of the volatility of operating earnings, sales volatility and inflation
Answer

Question An individual who selects the investment that offers greater certainty when everything else is the same is known as a risk averse investor. Answer
\checkmark True
False
Question 12 True/False 0 points Add Question Here

Question Investors are willing to forgo current consumption in order to increase future consumption for a nominal rate of interest.

Answer True

\checkmark False

				\Add Question Here	
Question 13	True/False	0 points		Modify	Remove
	Question The two most common calculations investors use to measure return performance are arithmetic means and geometric means.				
	Answer		\checkmark True		
			False		
				4 Add Question Here	
Question 14	True/False	0 points		Modify	Remove

Question The arithmetic mean is a superior measure of the long-term performance because it indicates the compound annual rate of return based on the ending value of the investment versus its beginning value.

Answer True

\checkmark False
4 Add Question Here
Question 15 Multiple Choice $\mathbf{0}$ points \quad Modify Remove

Question The basic trade-off in the investment process is
Answer \checkmark between the anticipated rate of return for a given investment instrument and its degree of risk. between understanding the nature of a particular investment and having the opportunity to purchase it. between high returns available on single instruments and the diversification of instruments into a portfolio. between the desired level of investment and possessing the resources necessary to carry it out.
None of the above.

			\Add	stion Here
Question 16	Multiple Choice	0 points	Modify	Remove
	Question The rate of exchange between future consumption and current consumption is			
	Answer	The nominal risk-free rate.		
		The coefficient of investment exchange.		
		The pure rate of interest.		
		The consumption/investment paradigm.		
		The expected rate of return.		
			- Add Q	stion Here
Question 17	Multiple Choice	0 points	Modify	Remove
	Question The ___ the variance of returns, everything else remaining constant, the ___ the dispersion of expectations and the ___ the risk.			
	Answer	Larger, greater, lower		
		Larger, smaller, higher		
		\checkmark Larger, greater, higher		
		Smaller, greater, lower		
		Smaller, greater, greater		

Question The coefficient of variation is a measure of
Answer Central tendency.
Absolute variability. Absolute dispersion.
\checkmark Relative variability.
Relative return.

Question 19	Multiple Choice
Question The nominal risk free rate of interest is a function of	
Answer \quadThe real risk free rate and the investment's variance.	
	The prime rate and the rate of inflation.
The T-bill rate plus the inflation rate.	
The tax free rate plus the rate of inflation.	
\checkmark	The real risk free rate and the rate of inflation.

Question In the phrase "nominal risk free rate," nominal means
Answer \quad Computed.
\checkmark Market.
Average.
Risk adverse.

Question The uncertainty of investment returns associated with how a firm finances its investments is known as

Answer | | Business risk. |
| :--- | :--- |
| | Liquidity risk. |
| | Exchange rate risk. |
| \checkmark | Financial risk. |

nank

Question What will happen to the security market line (SML) if the following events occur, other things constant: (1) inflation expectations increase, and (2) investors become more risk averse?
Answer Shift up and keep the same slope Shift up and have less slope
\checkmark Shift up and have a steeper slope
Shift down and keep the same slope
Shift down and have less slope

Question A decrease in the market risk premium, all other things constant, will cause the security market line to

Answer | | Shift up |
| :--- | :--- |
| | Shift down |
| | Have a steeper slope |
| \checkmark | Have a flatter slope |
| | Remain unchanged |

Question The security market line (SML) graphs the expected relationship between
Answer Business risk and financial risk
Systematic risk and unsystematic risk
\checkmark Risk and return
Systematic risk and unsystematic return
None of the above
Question 32 Multiple Choice 0 points Modify \quad Remove

Question Two factors that influence the nominal risk-free rate are;
Answer \checkmark The relative ease or tightness in capital markets and the expected rate of inflation.
The expected rate of inflation and the set of investment opportunities available in the economy.
The relative ease or tightness in capital markets and the set of investment opportunities available in the economy.
Time preference for income consumption and the relative ease or tightness in capital markets.
Time preference for income consumption and the set of investment opportunities available in the economy.

Question Measures of risk for an investment include
Answer Variance of returns and business risk
Coefficient of variation of returns and financial risk Business risk and financial risk
Variance of returns and coefficient of variation of returns All of the above
Question 34 Multiple Choice 0 Add Question Here

Question Sources of risk for an investment include
Answer Variance of returns and business risk Coefficient of variation of returns and financial risk
Business risk and financial risk
Variance of returns and coefficient of variation of returns
All of the above

Question Modern portfolio theory assumes that most investors are

Answer $\quad \checkmark$ Risk averse | Risk neutral |
| :--- |
| |
| Risk seekers |
| |
| |
| Risk tolerant |

None of the above

Question Which of the following is not a component of the required rate of return?
Answer Expected rate of inflation
Time value of money
Risk
\checkmark Holding period return
All of the above are components of the required rate of return

	$\mathbf{0}$ points	4ddd Question Here
Question 39 Multiple Choice	Modify Remove	

Question The increase in yield spreads in late 2008 and early 2009 indicated that
Answer Credit risk premiums decreased
\checkmark Market risk premiums increased Investors are more confident of the future cash flows of bonds
Non-investment grade bonds are less risky
Government bonds are no longer a risk free investment
4 Add Question Here
Question 40 Multiple Choic
0 points
Modify Remove
Question Which of the following is least likely to move a firm's position to the right on the Security Market Line (SML)?
Answer An increase in the firm's beta
Adding more financial debt to the firm's balance sheet relative to equity
Changing the business strategy to include new product lines with more volatile expected cash flows Investors perceive the stock as being more risky
\checkmark An increase in the risk-free required rate of return.

Question Exhibit 1.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
Suppose you bought a GM corporate bond on January 25,2001 for $\$ 750$, on January 25,2004 sold it for $\$ 650.00$.
Refer to Exhibit 1.2. What was your annual holding period return?
0.8667
-0.1333
0.0333
0.9534
-0.0466
HPR $=$ Ending Value/Beginning Value $=\$ 650.00 / \$ 750=0.8667$
Annual HPR $=(\mathrm{HPR})^{1 / n}=(0.8667)^{1 / 3}=0.9534$
HPR $=$ Ending Value/Beginning Value $=\$ 650.00 / \$ 750=0.8667$
Annual HPR $=(H P R)^{1 / n}=(0.8667)^{1 / 3}=0.9534$

Question 44 Multiple Choice
0 points

Question Exhibit 1.2

USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
Suppose you bought a GM corporate bond on January 25 , 2001 for $\$ 750$, on January 25,2004 sold it for $\$ 650.00$.
Refer to Exhibit 1.2. What was your annual holding period yield?
Answer

$$
\left.\begin{array}{ll}
\text { Answer } & -0.0466 \\
& -0.1333 \\
0.0333 \\
0.3534 \\
0.8667
\end{array}\right] .
$$

Question Exhibit 1.3
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)

The common stock of XMen Inc. had the following historic prices.

Time	Price of X-Tech
$3 / 01 / 1999$	50.00
$3 / 01 / 2000$	47.00
$3 / 01 / 2001$	76.00
$3 / 01 / 2002$	80.00
$3 / 01 / 2003$	85.00
$3 / 01 / 2004$	90.00

Refer to Exhibit 1.3. What was your holding period return for the time period 3/1/1999 to 3/1/2004?
Answer 0.1247
$\checkmark 1.8$
0.1462
0.40
0.25

Correct Feedback \quad HPR $=$ Ending Value/Beginning Value $=90 / 50=1.8$
Incorrect Feedback $\quad H P R=$ Ending Value/Beginning Value $=90 / 50=1.8$

Add Question Here Modify Remove

Question Exhibit 1.3

USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
The common stock of XMen Inc. had the following historic prices.

Time	Price of X-Tech
$3 / 01 / 1999$	50.00
$3 / 01 / 2000$	47.00
$3 / 01 / 2001$	76.00
$3 / 01 / 2002$	80.00
$3 / 01 / 2003$	85.00

Refer to Exhibit 1.3. What was your annual holding period yield (Annual HPY)?
Answer
0.1462
$\checkmark 0.1247$
1.8
0.40
0.25

Correct Feedback Annual HPR $=(\mathrm{HPR})^{1 / n}=(1.8)^{1 / 5}=1.1247$
Annual HPY $=$ Annual HPR $-1=1.1247-1=0.1247=12.47 \%$

Time	Price of X-Tech	Return	HPR
$3 / 01 / 1999$	50		
$3 / 01 / 2000$	47	-0.0600	0.9400
$3 / 01 / 2001$	76	0.6170	1.6170
$3 / 01 / 2002$	80	0.0526	1.0526
$3 / 01 / 2003$	85	0.0625	1.0625
$3 / 01 / 2004$	90	0.0588	1.0588

Incorrect Feedback Annual HPR $=(\mathrm{HPR})^{1 / n}=(1.8)^{1 / 5}=1.1247$
Annual HPY $=$ Annual HPR - $1=1.1247-1=0.1247=12.47 \%$

Time	Price of X-Tech	Return	HPR
$3 / 01 / 1999$	50		
$3 / 01 / 2000$	47	-0.0600	0.9400
$3 / 01 / 2001$	76	0.6170	1.6170
$3 / 01 / 2002$	80	0.0526	1.0526
$3 / 01 / 2003$	85	0.0625	1.0625
$3 / 01 / 2004$	90	0.0588	1.0588

Question Exhibit 1.3
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
The common stock of XMen Inc. had the following historic prices.

Time	Price of X-Tech
$3 / 01 / 1999$	50.00
$3 / 01 / 2000$	47.00
$3 / 01 / 2001$	76.00
$3 / 01 / 2002$	80.00
$3 / 01 / 2003$	85.00
$3 / 01 / 2004$	90.00

Refer to Exhibit 1.3. What was your arithmetic mean annual yield for the investment in XMen Industries.

Answer

$\checkmark 0.1462$
0.1247
1.8
0.40
0.25

Correct Feedback \quad Arithmetic Mean $=$

$$
\frac{1}{N} \sum_{t=1}^{N} H P Y_{t}=\frac{-0.06+0.617+0.0526+0.0625+0.588}{5}=0.1462
$$

Incorrect Feedback Arithmetic Mean $=$

$$
\frac{1}{N} \sum_{t=1}^{N} H P Y_{t}=\frac{-0.06+0.617+0.0526+0.0625+0.588}{5}=0.1462
$$

Question Exhibit 1.3

USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
The common stock of XMen Inc. had the following historic prices.

Time	Price of X-Tech
$3 / 01 / 1999$	50.00
$3 / 01 / 2000$	47.00
$3 / 01 / 2001$	76.00
$3 / 01 / 2002$	80.00
$3 / 01 / 2003$	85.00
$3 / 01 / 2004$	90.00

Correct Feedback

$$
\begin{aligned}
\text { Geometric Mean } & =\prod_{t=1}^{N}\left(H P R_{t}\right)^{1 / N}-1 \\
& =[(0.94)(1.617)(1.0526)(1.0588)]^{1 / 5}-1 \\
& =1.1247-1=0.1247=12.47 \%
\end{aligned}
$$

Incorrect Feedback

$$
\begin{aligned}
\text { Geometric Mean } & =\prod_{t=1}^{N}\left(H P R_{t}\right)^{1 / N}-1 \\
& =[(0.94)(1.617)(1.0526)(1.0588)]^{1 / 5}-1 \\
& =1.1247-1=0.1247=12.47 \%
\end{aligned}
$$

Question Exhibit 1.4

USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
You have concluded that next year the following relationships are possible:

Economic Status	Probability	Rate of Return
Weak Economy	.15	-5%
Static Economy	.60	5%
Strong Economy	.25	15%

Refer to Exhibit 1.4. What is your expected rate of return $\left[E\left(R_{i}\right)\right]$ for next year?

Answer	4.25\%
	$\checkmark 6.00 \%$
	6.25\%
	7.75\%
	8.00\%
Correct Feedback	$E\left(R_{i}\right)=(0.15)(-5)+(0.60)(5)+(0.25)(15)=6 \%$
Incorrect Feedback	$E\left(R_{i}\right)=(0.15)(-5)+(0.60)(5)+(0.25)(15)=6 \%$

0 points

Question Given investments A and B with the following risk return characteristics, which one would you prefer and why?

		Standard Deviation
Investment	Expected Return	of Expected Returns
A	12.2%	7%
B	8.8%	5%

Answer
Investment A because it has the highest expected return
Investment A because it has the lowest relative risk.
Investment B because it has the lowest absolute risk.
\checkmark Investment B because it has the lowest coefficient of variation.
Investment A because it has the highest coefficient of variation.
Correct Feedback Coefficient of Variation = Standard Deviation of Returns/Expected Rate of Return
$C V_{A}=7 \% / 12.2 \%=0.573$
$C V_{B}=5 \% / 8.8 \%=0.568$
Investment B has the lowest coefficient of variation and would be preferred.
Incorrect Feedback Coefficient of Variation = Standard Deviation of Returns/Expected Rate of Return
$C V_{A}=7 \% / 12.2 \%=0.573$
$C V_{B}=5 \% / 8.8 \%=0.568$
Investment B has the lowest coefficient of variation and would be preferred.

Question Exhibit 1.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
You are provided with the following information:
Nominal return on risk-free asset $=4.5 \%$
Expected return for asset $\mathrm{i}=12.75 \%$
Expected return on the market portfolio $=9.25 \%$
Refer to Exhibit 1.6. Calculate the risk premium for asset i.

Answer	4.5% 8.25% 4.75%
3.5%	
	None of the above
Correct Feedback	Risk premium for asset $\mathrm{i}=12.75-4.5=8.25 \%$
Incorrect Feedback	Risk premium for asset $\mathrm{i}=12.75-4.5=8.25 \%$

Question 57 Multiple Choice
Question Exhibit 1.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
You are provided with the following information:
Nominal return on risk-free asset $=4.5 \%$
Expected return for asset $\mathrm{i}=12.75 \%$
Expected return on the market portfolio $=9.25 \%$
Refer to Exhibit 1.6. Calculate the risk premium for the market portfolio.

Answer	4.5%
	8.25%
	$\checkmark .75 \%$

4.75\%
3.5\%

None of the above
Correct Feedback Risk premium market portfolio $=9.25-4.5=4.75 \%$
Incorrect Feedback Risk premium market portfolio $=9.25-4.5=4.75 \%$

Question Exhibit 1.7
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
Consider the following information
Nominal annual return on U.S. government T-bills for year $2009=3.5 \%$
Nominal annual return on U.S. government long-term bonds for year $2009=4.75 \%$
Nominal annual return on U.S. large-cap stocks for year 2009=8.75\%
Consumer price index January 1, 2009 = 165

Refer to Exhibit 1.7. Compute the rate of inflation for the year 2009.

| Answer | 2.42% |
| :--- | :--- | :--- |
| | 4.0% |
| | 1.69% |
| | 1.24% |
| | None of the above |

Correct Feedback Real return on U.S. stocks $=(1.0875 / 1.0242)-1=.0618=6.18 \%$
Incorrect Feedback Real return on U.S. stocks $=(1.0875 / 1.0242)-1=.0618=6.18 \%$

Question Exhibit 1.8
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
Assume that you hold a two stock portfolio. You are provided with the following information on your holdings:

Stock	Shares	Price(t)	Price(t + 1)
1	15	10	12
2	25	15	16

Refer to Exhibit 1.8. Calculate the HPY for stock 1.

Answer | 10% |
| :--- |
| 20% |
| 15% |
| 12% |
| |
| 7% |

Correct Feedback

Stock	Shares	Price (\mathbf{t})	MV $\mathbf{(t)}$	Price $\mathbf{(t + 1)}$	MV $\mathbf{(t + 1)}$	HPR	HPY	Weight	Weighted
HPY									
1	15	10	150	12	180	1.2	0.2	0.29	0.058
2	25	15	375	16	400	1.07	0.07	0.71	0.048
			525		580				0.106

Incorrect Feedback
HPY for stock $1=(180 / 150)-1=.2=20 \%$

Stock	Shares	Price(t)	MV $\mathbf{(t)}$	Price $(\mathbf{t + 1)}$	MV $(\mathbf{t + 1})$	HPR	HPY	Weight	Weighted HPY
1	15	10	150	12	180	1.2	0.2	0.29	0.058
2	25	15	375	16	400	1.07	0.07	0.71	0.048
			525		580				0.106

HPY for stock $1=(180 / 150)-1=.2=20 \%$

Modify Remove
Question Exhibit 1.8
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
Assume that you hold a two stock portfolio. You are provided with the following information on your holdings:

Stock	Shares	Price(t)	Price(t + 1)
1	15	10	12
2	25	15	16

Refer to Exhibit 1.8. Calculate the HPY for stock 2.

Answer	5%
6%	
	$\checkmark \quad 7 \%$
8%	
	10%

Correct Feedback

Stock	Shares	Price (\mathbf{t})	MV (\mathbf{t})	Price $(\mathbf{t} \mathbf{+ 1})$	MV $(\mathbf{t} \mathbf{1})$	HPR	HPY	Weight	Weighted HPY
1	15	10	150	12	180	1.2	0.2	0.29	0.058
2	25	15	375	16	400	1.07	0.07	0.71	0.048
			525		580				0.106

Incorrect Feedback

HPY for stock $2=(400 / 375)-1=.07=7 \%$

Stock	Shares	Price $\mathbf{(t)}$	MV $\mathbf{(t)}$	Price $\mathbf{(t + 1)}$	MV $\mathbf{(t + 1)}$	HPR	HPY	Weight	Weighted HPY
1	15	10	150	12	180	1.2	0.2	0.29	0.058
2	25	15	375	16	400	1.07	0.07	0.71	0.048
			525		580				0.106

HPY for stock $2=(400 / 375)-1=.07=7 \%$

Question Exhibit 1.8
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
Assume that you hold a two stock portfolio. You are provided with the following information on your holdings:

Stock	Shares	Price(t)	Price(t + 1)
1	15	10	12
2	25	15	16

Refer to Exhibit 1.8. Calculate the market weights for stock 1 and 2 based on period t values.
Answer

Question Economists project the long-run real growth rate for the next five years to be 2.5 percent and the average annual rate of inflation over this five year period to be 3 percent. What is the expected nominal rate of return over the next five years?

Answer
0.500 percent
1.056 percent
2.750 percent
5.500 percent
5.575 percent

Correct Feedback	$1-(1.025)(1.03)=1-1.05575=5.575 \%$
Incorrect Feedback	$1-(1.025)(1.03)=1-1.05575=5.575 \%$

