
Software Testing: A Craftsman’s Approach, 4th Edition
Answers to Selected Exercises

Chapter 2

1. Revisit the traditional Triangle Program flowchart in Figure 2.1. Can the variable match ever have the value of
4? Of 5? Is it ever possible to "execute" the following sequence of numbered boxes: 1, 2, 5, 6 ?

The values 1, 2, and 3 for variable match indicate which pair of sides are equal. The transitivity of equality means
that if any two pairs are equal, the third pair must also be equal. Hence match can only have one of the values 1,
2, 3, or 6. Also, this makes the box sequence 1, 2, 5, 6 is impossible.

2. Recall the discussion from Chapter 1 about the relationship between the specification and the implementation
of a program. If you study the implementation of NextDate carefully, you will see a problem. Look at the CASE
clause for 30 day months (4, 6, 9, 11). There is no special action for day = 31. Discuss whether or not this
implementation is "correct". Repeat this discussion for the treatment of values of day ≥ 29 in the CASE clause for
February.

Correctness is a relation between the spec and the code. Since no mention of responses to invalid dates is made in
the simple definition of NextDate, the implementation on p. 23 is technically correct. June 31, for example,
satisfies the three range definitions. A user would likely not be satisfied with this answer, however. A conscientious
developer, upon noticing this problem, would likely ask that the spec be changed. IF not, and the programmer put
in a fix that was clearly needed, this would be an example of unspecified, but desirable, functionality.

3. In Chapter 1, we mentioned that part of a test case is the expected output. What would you use as the
expected output for a NextDate test case of June 31, 1812? Why?

At a minimum, June 31, 1812 should be identified as an invalid date. The best expected output would be
something to the effect that the input date exceeds the maximum day of the month.

4. One common addition to the Triangle Problem is to check for right triangles. Three sides constitute a right
triangle if the Pythagorean Relationship is satisfied:

c2 = a2 + b2

This change makes it convenient to require that the sides be presented in increasing order, i.e., a <= b <= c.
Extend the Triangle3 program to include the right triangle feature. We will use this extension in the exercise
sections in Parts II and III.

'Step 3: Determine Triangle Type
If IsATriangle
 Then If (a = b) AND (b = c)
 Then Output ("Equilateral")
 Else If (a ¹ b) AND (a ¹ c) AND (b ¹ c)
 Then Output ("Scalene")
 delete this Else Output ("Isosceles")
 replace with Else IF (a^2 = b^2 + c^2) OR (b^2 = a^2 + c^2) OR (c^2 = a^2 + b^2)
 Then Output ("Right Triangle")
 Else Output ("Isosceles")
 EndIf
 EndIf
 Else Output("Not a Triangle")
EndIf

Software Testing: A Craftsman’s Approach, 4th Edition
Answers to Selected Exercises

5. What will the triangle2 program do for the sides -3, -3, 5? Discuss this in terms of the considerations we
made in Chapter 1.

It will execute the Output ("Not a Triangle") statement because the c< a + b condition will be false, hence
IsATriangle will be false.

6. The function YesterDate is the inverse of NextDate. Given a month, day, year, YesterDate returns the

date of
the day before. Develop a program in your favorite language (or our generalized pseudocode) for YesterDate. We
will also use this as a continuing exercise.

Program YesterDate2
'
Dim yesterDay,yesterMonth,yesterYear As Integer
Dim day,month,year As Integer
Dim c1, c2, c3 As Boolean
'
Do
 Output ("Enter today's date in the form MM DD YYYY")
 Input (month,day,year)
 c1 = (1 <= day) AND (day <= 31)
 c2 = (1 <= month) AND (month <= 12)
 c3 = (1812 <= year) AND (year <= 2012)
 If NOT(c1)
 Then Output("Value of day not in the range 1..31")
 EndIf
 If NOT(c2)
 Then Output("Value of month not in the range 1..12")
 EndIf
 If NOT(c3)
 Then Output("Value of year not in the range 1812..2012")
 EndIf
Until c1 AND c2 AND c2

Case month Of
Case 1: month Is 5, 7, 10, OR 12: 'months after a 30-day month
 If 1< day <= 31
 Then yesterDay = day - 1
 Else
 yesterDay = 30
 yesterMonth = month - 1
 EndIf
Case 2: month Is 2, 4, 6, 8, 9, , Or 11 'months after a 31-day month
 If 1 < day <= 31
 Then yesterDay = day - 1
 Else yesterDay = 1
 yesterMonth = month - 1
 EndIf
Case 3: month Is 1: January
 If 1 < day <= 31
 Then yesterDay = day - 1
 Else
 yesterDay = 31
 yesterMonth = 12

Software Testing: A Craftsman’s Approach, 4th Edition
Answers to Selected Exercises

 If year = 2013
 Then Output ("Invalid Input Date")
 Else yester.year = year - 1
 EndIf
Case 4: month is 3: 'March
 If 1 < day <= 31
 Then yesterDay = day - 1
 Else
 If day = 1
 Then
 If (year is a leap year)
 Then
 yesterDay = 29 'leap day
 yesterMonth = 2
 Else 'not a leap year
 yesterDay = 28
 yesterMonth = 2
 EndIf
 EndIf
 EndIf
EndCase
Output ("Yesterday's date is", yesterMonth, yesterDay, yesterYear)
'
End YesterDate

7. Part of the art of GUI design is to prevent user input errors. Event-driven applications are particularly
vulnerable to input errors because events can occur in any order. As the given pseudo-code definition stands, a
user could enter a U. S. dollar amount and then click on the compute button without selecting a country. Similarly,
could select a country and then click on the compute button without inputting a dollar amount. In an object-
oriented application, we can control this by being careful about when we instantiate objects. Revise the GUI class
pseudo-code to prevent these two errors.

A reasonable Visual Basic answer is to use the visibility property of the Compute command button. It should be
set to "invisible" at design time, and logic associated with the dollar amount and country codes sets it to visible.

