Fill in the Blank Questions

1. The ______ is the point at which a lens focuses parallel beams of light.

focal point

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 1. Remember

Learning Outcome: 02.01.02 Correlate lens strength and focal length

Section: 02.01 Topic: Microscopy

2. The ______ is the distance between the center of a lens and the point at which it focuses parallel beams of light.

focal length

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 1. Remember

Learning Outcome: 02.01.02 Correlate lens strength and focal length

Section: 02.01 Topic: Microscopy

True / False Questions

3. Light rays are refracted (bent) when they cross the interface between materials with different refractive indices.

TRUE

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 1. Remember

Learning Outcome: 02.01.01 Relate the refractive indices of glass and air to the path light takes when it passes through a prism or convex

lens

Section: 02.01 Topic: Microscopy

Multiple Choice Questions

- 4. Confocal microscopes exhibit improved contrast and resolution by
- A. illumination of a large area of the specimen.
- **<u>B.</u>** blocking out stray light with an aperture located above the objective lens.
- C. use of light at longer wavelengths.
- D. use of ultraviolet light to illuminate the specimen.

 $ASM\ Objective:\ 08.01\ Properly\ prepare\ and\ view\ specimens\ for\ examination\ using\ microscopy\ (bright\ field\ and,\ if\ possible,\ phase\ contrast).$

Blooms Level: 2. Understand

Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the

microscope Section: 02.02 Topic: Microscopy

5. A 30× objective and a 20× ocular produce a total magnification of

A. 230×.

B. 320×.

C. 50×.

<u>D.</u> 600×.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 3. Apply

Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the microscope

Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to examine a specimen

6. A 45× objective and a 10× ocular produce a total magnification of
A. 900×.
B. 55×.
<u>C.</u> 450×.
D. 145×.
ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 3. Apply
Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the microscope Section: 02.02
Topic: Microscopy
7. A microscope that exposes specimens to ultraviolet, violet, or blue light and forms an image with the light emitted at a different wavelength is called a microscope.
image with the light emitted at a different wavelength is called a microscope. A. phase-contrast
B. dark-field
C. scanning electron
<u>D.</u> fluorescence
ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills
Blooms Level: 1. Remember Learning Outcome: 02.02.03 Create a table that compares and contrasts the various types of light microscopes in terms of their uses, how images are created, and the quality of images produced Section: 02.02
Topic: Microscopy
8. Immersion oil can be used to increase the resolution achieved with some microscope lenses
because it increases the between the specimen and the objective lens.
A. optical density B. refractive index
C. optical density and refractive index
D. neither optical density nor refractive index
ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills
Blooms Level: 2. Understand Learning Outcome: 02.01.01 Relate the refractive indices of glass and air to the path light takes when it passes through a prism or convex lens
Section: 02.01 Topic: Microscopy

True / False Questions

9. A substage condenser is used to focus light onto the specimen, which increases the resolution of a light microscope.

TRUE

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the

microscope Section: 02.02 Topic: Microscopy

Fill in the Blank Questions

10. The ______ is the distance between the specimen and the objective lens when the specimen is in focus. working distance

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 1. Remember

Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the

microscope Section: 02.02 Topic: Microscopy

11. The useful magnification of a light microscope is limited by the ______ of the light source being utilized.

wavelength

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to examine a specimen

12. The special dyes used in fluorescence microscopy that absorb light at one wavelength and emit light at a different wavelength are called fluorochromes
ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). Blooms Level: 1. Remember Learning Outcome: 02.02.03 Create a table that compares and contrasts the various types of light microscopes in terms of their uses, how images are created, and the quality of images produced Section: 02.02 Topic: Microscopy
13. In order to view a specimen with a total magnification of $400\times$, a objective must be used if the ocular is $10\times$. $\underline{40\times}$
ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 3. Apply Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the microscope Section: 02.02 Topic: Microscopy

True / False Questions

14. Confocal microscopes, in combination with specialized computer software, can be used to create three-dimensional images of cell structures.

TRUE

 $ASM\ Objective:\ 08.01\ Properly\ prepare\ and\ view\ specimens\ for\ examination\ using\ microscopy\ (bright\ field\ and,\ if\ possible,\ phase\ contrast).$ $ASM\ Topic:\ Module\ 08\ Microbiology\ Laboratory\ Skills$

Blooms Level: 2. Understand

Learning Outcome: 02.02.03 Create a table that compares and contrasts the various types of light microscopes in terms of their uses, how images are created, and the quality of images produced

15. A light microscope with an objective lens numerical aperture of 0.65 is capable of allowing two objects 400 nm apart to be distinguished when using light with a wavelength of 420 nm.

TRUE

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 4. Analyze

Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to

examine a speciment Section: 02.02
Topic: Microscopy

16. Resolution improves when the wavelength of the illuminating light decreases.

TRUE

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 4. Analyze

Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to

examine a specimen Section: 02.02 Topic: Microscopy

17. Immersion oil is used to prevent a specimen from drying out.

FALSE

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the microscope

18. It is possible to build a light microscope capable of 10,000× magnification, but the image would not be sharp because resolution is independent of magnification.

TRUE

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to

examine a specimen Section: 02.02 Topic: Microscopy

19. Immersion oil increases the amount of light entering the objective lens.

TRUE

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to examine a specimen

Section: 02.02 Topic: Microscopy

Multiple Choice Questions

20. If the objective lenses of a microscope can be changed without losing focus on the specimen, they are said to be

A. equifocal.

B. totifocal.

C. parfocal.

D. optifocal.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the microscope

21. An instrument that magnifies slight differences in the refractive index of cell structures is called a (n) microscope. A. phase-contrast B. electron C. fluorescence D. densitometric
ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.02.03 Create a table that compares and contrasts the various types of light microscopes in terms of their uses, how images are created, and the quality of images produced Section: 02.02 Topic: Microscopy
22. The instrument that produces a bright image of the specimen against a dark background is called a (n) microscope. A. phase-contrast B. electron C. bright-field D. dark-field
ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.02.03 Create a table that compares and contrasts the various types of light microscopes in terms of their uses, how images are created, and the quality of images produced Section: 02.02 Topic: Microscopy
 23. As the magnification of a series of objective lenses increases, the working distance A. increases. B. decreases. C. stays the same. D. cannot be predicted.
ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 4. Analyze Learning Outcome: 02.01.02 Correlate lens strength and focal length Section: 02.01 Topic: Microscopy

- 24. Prior to staining, smears of microorganisms are heat-fixed in order to
- A. allow eventual visualization of internal structures.
- B. ensure removal of dust particles from the slide surface.
- **C.** attach it firmly to the slide.
- D. create small pores in cells that facilitates binding of stain to cell structures.

Blooms Level: 2. Understand

Learning Outcome: 02.03.01 Recommend a fixation process to use when the microbe is a bacterium or archaeon and when the microbe is a protist

Section: 02.03

Topic: Preparing Microscopy Specimens

25. Acid-fast organisms such as *Mycobacterium tuberculosis* contain _____ constructed from mycolic acids in their cell walls.

A. proteins

B. carbohydrates

C. lipids

D. peptidoglycan

ASM Objective: 02.01 The structure and function of microorganisms have been revealed by the use of microscopy (including bright field, phase contrast, fluorescent, and electron).

ASM Objective: 02.02 Bacteria have unique cell structures that can be targets for antibiotics, immunity and phage infection.

ASM Topic: Module 02 Cell Structure and Function

Blooms Level: 2. Understand

Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible

Section: 02.03 Topic: Mycobacteria

Topic: Preparing Microscopy Specimens

26. In the Gram-staining procedure, the primary stain is

A. iodine.

B. safranin.

C. crystal violet.

D. alcohol.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 1. Remember

Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure

Section: 02.03

27. In the Gram-staining procedure, the decolorizer is

A. iodine.

B. safranin.

C. crystal violet.

D. ethanol or acetone.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 1. Remember

Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining

procedure Section: 02.03

Topic: Preparing Microscopy Specimens

28. In the Gram-staining procedure, the counterstain is

A. iodine.

B. safranin.

C. crystal violet.

D. alcohol.

ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 1. Remember

Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining

procedure Section: 02.03

Topic: Identifying Microorganisms Topic: Preparing Microscopy Specimens

29. In the Gram-staining procedure, the mordant is

A. iodine.

B. safranin.

C. crystal violet.

D. alcohol.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 1. Remember

Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining

procedure Section: 02.03

30. After the primary stain has been added but positive organisms are stained at	=
A. purple; purple B. purple; colorless C. purple; pink D. pink; pink	
ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 4. Analyze	umination using microscopy (bright field and, if possible, phase contrast). rive and Gram-negative bacterial cells at each step of the Gram-staining
31. After the decolorizer has been added, gran and gram-negative organisms are stained A. purple; purple purple; colorless C. purple; pink D. pink; pink	
ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 4. Analyze	mination using microscopy (bright field and, if possible, phase contrast). ive and Gram-negative bacterial cells at each step of the Gram-staining

32. After the secondary stain has been added, gram-positive organisms are stained and gram-negative organisms are stained
A. purple; purple
B. purple; colorless
C. purple; pink
D. pink; pink
ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast ASM Topic: Module 08 Microbiology Laboratory Skills
Blooms Level: 4. Analyze Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 Topic: Preparing Microscopy Specimens
33. If the decolorizer is left on too long in the Gram-staining procedure, gram-positive organisms will be stained and gram-negative organisms will be stained
A. purple; blue
B. purple; colorless
C. purple; pink
D. pink; pink
ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast ASM Topic: Module 08 Microbiology Laboratory Skills

ASM Topic: Module 08 Microbiology Laboratory Skills
Blooms Level: 4. Analyze
Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure
Section: 02.03
Topic: Preparing Microscopy Specimens

34. If the decolorizer is not left on long enough in the Gram-staining procedure, gram-positive organisms will be stained _____ and gram-negative organisms will be stained

A. purple; purple

B. purple; colorless

C. purple; pink D. pink; pink

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 4. Analyze

Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining

procedure Section: 02.03

Topic: Preparing Microscopy Specimens

35. Which of the following is considered to be a differential staining procedure?

A. Gram stain

B. Acid-fast stain

C. Both Gram stain and Acid-fast stain

D. Leifson's flagella stain

 $ASM\ Objective:\ 08.01\ Properly\ prepare\ and\ view\ specimens\ for\ examination\ using\ microscopy\ (bright\ field\ and,\ if\ possible,\ phase\ contrast).$

ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining

procedure

Section: 02.03

Topic: Identifying Microorganisms Topic: Preparing Microscopy Specimens

- 36. Basic dyes such as methylene blue bind to cellular molecules that are
- A. hydrophobic.
- **B.** negatively charged.
- C. positively charged.
- D. aromatic.

Blooms Level: 2. Understand

Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible

Section: 02.03

Topic: Preparing Microscopy Specimens

True / False Questions

37. Gram staining divides bacterial species into two groups based on differences in cell wall structure.

TRUE

ASM Objective: 02.01 The structure and function of microorganisms have been revealed by the use of microscopy (including bright field, phase contrast, fluorescent, and electron).

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 02 Cell Structure and Function ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining

procedure Section: 02.03

Topic: Bacterial Cellular Morphology Topic: Preparing Microscopy Specimens

38. Negative staining facilitates the visualization of bacterial capsules that are intensely stained by the procedure.

FALSE

ASM Objective: 02.01 The structure and function of microorganisms have been revealed by the use of microscopy (including bright field, phase contrast, fluorescent, and electron).

ASM Objective: 02.03 Bacteria and Archaea have specialized structures (e.g. flagella, endospores, and pili) that often confer critical capabilities.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 02 Cell Structure and Function ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible

Section: 02.03

Topic: Bacterial Cellular Morphology

Topic: Microscopy

Topic: Preparing Microscopy Specimens

39. Negative staining with India ink can be used to reveal the presence of capsules that surround bacterial cells.

TRUE

ASM Objective: 02.01 The structure and function of microorganisms have been revealed by the use of microscopy (including bright field, phase contrast, fluorescent, and electron).

ASM Objective: 02.03 Bacteria and Archaea have specialized structures (e.g. flagella, endospores, and pili) that often confer critical capabilities.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 02 Cell Structure and Function ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible

Section: 02.03

Topic: Bacterial Cellular Morphology

Topic: Microscopy

Topic: Preparing Microscopy Specimens

40. Mordants increase the binding between a stain and specimen.

TRUE

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible

Section: 02.03 Topic: Microscopy

41. In order to stain flagella so that they may be readily observed by light microscopy, it is usually necessary to increase their thickness.

TRUE

ASM Objective: 02.01 The structure and function of microorganisms have been revealed by the use of microscopy (including bright field, phase contrast, fluorescent, and electron).

ASM Objective: 02.03 Bacteria and Archaea have specialized structures (e.g. flagella, endospores, and pili) that often confer critical capabilities.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 02 Cell Structure and Function ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible

Section: 02.03

Topic: Bacterial Cellular Morphology

Topic: Microscopy

Topic: Preparing Microscopy Specimens

Fill in the Blank Questions

42. The procedure in which a single stain is used to visualize microorganisms is called ______ staining.

simple

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 1. Remember

Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible

Section: 02.03
Topic: Microscopy

Topic: Preparing Microscopy Specimens

43. ______ is the process by which internal and external structures of cells and organisms are preserved and maintained in position.

Fixation

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 1. Remember

Learning Outcome: 02.03.01 Recommend a fixation process to use when the microbe is a bacterium or archaeon and when the microbe is a protist

Section: 02.03

Topic: Bacterial Cellular Morphology Topic: Preparing Microscopy Specimens

44. Thin films of bacteria that have been air-dried onto a glass microscope slide are called		
<u>smears</u>		
ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Section: 02.03 Topic: Microscopy Topic: Preparing Microscopy Specimens		
45. A procedure that divides organisms into two or more groups depending on their individual reactions to the same staining procedure is referred to as staining. differential		
ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Section: 02.03 Topic: Microscopy Topic: Preparing Microscopy Specimens		
Multiple Choice Questions		
46. The Gram-staining procedure is an example of A. simple staining B. negative staining C. differential staining D. fluorescent staining		
ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 Topic: Preparing Microscopy Specimens		

True / False Questions

47. The Gram-staining procedure is widely used because it allows rapid identification of a microorganism with little additional testing.

FALSE

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 3. Apply

Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible

Section: 02.03

Topic: Identifying Microorganisms Topic: Preparing Microscopy Specimens

Multiple Choice Questions

48. Regions of a specimen wi	th higher electron density scatter	electrons and,
therefore, appear	_ in the image projected onto the scr	een of a transmission
electron microscope.		
A. more; lighter		
B. more; darker		
C. fewer; darker		
D. fewer; lighter		

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light microscopes

Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and

 $electron\ cryotomography$

Section: 02.04 Topic: Microscopy

Topic: Preparing Microscopy Specimens

True / False Questions

49. Because transmission electron microscopy uses electrons rather than light, it is not necessary to stain biological specimens before observing them.

FALSE

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light

microscopes

Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and

electron cryotomography Section: 02.04

Topic: Microscopy

Topic: Preparing Microscopy Specimens

50. Scanning electron microscopes bombard specimens with a stream of electrons; however, the specimen image is produce by electrons that are derived from atoms of the specimen itself rather than by the electrons used to bombard the specimen.

TRUE

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light

microscopes

Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and

electron cryotomography Section: 02.04

Topic: Microscopy Topic: Preparing Microscopy Specimens

51. It was possible to view viruses only after the invention of the electron microscope because they are too small to be seen with a light microscope.

TRUE

ASM Objective: 02.01 The structure and function of microorganisms have been revealed by the use of microscopy (including bright field, phase contrast, fluorescent, and electron).

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 02 Cell Structure and Function

ASM Topic: Module 02 Cell Structure and Function ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light microscopes

Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and electron cryotomography

Fill in the Blank Questions

52. An electron microscope uses ______ lenses to focus beams of electrons onto a specimen.

magnetic

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light

microscopes Section: 02.04 Topic: Microscopy

Multiple Choice Questions

53. Scanning electron microscopy is most often used to reveal

A. surface structures.

B. internal structures.

C. both surface and internal structures simultaneously.

D. either surface or internal structures, but not simultaneously.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and

electron cryotomography

- 54. Small internal cell structures are best visualized with a
- A. light microscope.
- B. dark-field microscope.
- <u>C.</u> transmission electron microscope.
- D. flagellar microscope.

Blooms Level: 2. Understand

Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and

electron cryotomography

Section: 02.04

Topic: Bacterial Cellular Morphology

Topic: Microscopy

- 55. In transmission electron microscopy, spreading a specimen out in a thin film with uranyl acetate, which does not penetrate the specimen, is called
- A. freeze-etching.
- B. simple staining.
- C. shadow staining.

D. negative staining.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light

microscopes

Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and

electron cryotomography

Section: 02.04

Topic: Microscopy

Topic: Preparing Microscopy Specimens

Fill in the Blank Questions

	s frozen specimens along lines of greatest weakness, often down the membranes so that they may be observed by transmission electron
ASM Topic: Module 08 Microbio Blooms Level: 2. Understand	ide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and
57. The when they are immers Scanning tunneling	microscope is capable of atomic resolution of specimens, even ed in water.
ASM Topic: Module 08 Microbio Blooms Level: 2. Understand	repare and view specimens for examination using microscopy (bright field and, if possible, phase contras logy Laboratory Skills inguish scanning tunneling from atomic force microscopes in terms of how they create images and their
58. The designer of the awarded the 1986 No. Ernst Ruska	e first transmission electron microscope,, was sel Prize in physics.
ASM Topic: Module 08 Microbio Blooms Level: 1. Remember	repare and view specimens for examination using microscopy (bright field and, if possible, phase contras logy Laboratory Skills ide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and

Multiple Choice Questions

- 59. Atomic force microscopes use a scanning probe that maintains a fixed distance from the surface of the specimen. It is useful for specimens that
- **A.** do not conduct electricity well.
- B. have extremely uneven surfaces.
- C. both do not conduct electricity well and have extremely uneven surfaces are correct.
- D. neither do not conduct electricity well nor have extremely uneven surfaces is correct.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.05.01 Distinguish scanning tunneling from atomic force microscopes in terms of how they create images and their

uses

Section: 02.05 Topic: Microscopy

True / False Questions

60. Scanning tunneling electron microscopes create a three-dimensional image of specimens at atomic level resolution.

TRUE

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 2. Understand

Learning Outcome: 02.05.01 Distinguish scanning tunneling from atomic force microscopes in terms of how they create images and their

uses

Section: 02.05 Topic: Microscopy

Multiple Choice Questions

- 61. If immersion oil was replaced with water, what would happen?
- A. The refractive index would increase, improving resolution.
- **<u>B.</u>** The refractive index of water would be greater than air but less than oil, improving resolution less than oil.
- C. The refractive index of water would be less than that of air, decreasing resolution.
- D. There would be no difference.

Blooms Level: 4. Analyze

Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to

examine a specimen Section: 02.02 Topic: Microscopy

62. As the resolution of a microscope system improves, the size of the smallest object that can be seen clearly

A. is larger.

B. is smaller.

C. is not affected.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 3. Apply Section: 02.02 Topic: Microscopy

- 63. If you forgot to heat fix a smear before doing a Gram stain, which of the following might occur?
- A. The stains would not adhere to the bacteria.
- **B.** The smear may not adhere to the slide.
- C. The decolorization step of the Gram stain would not work properly.
- D. Gram-positive and Gram-negative bacteria would both stain purple.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 4. Analyze

Learning Outcome: 02.03.01 Recommend a fixation process to use when the microbe is a bacterium or archaeon and when the microbe is a

protisi

Provision Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure

Section: 02.03 Topic: Microscopy

64. A specimen has been prepared for viewing with a transmission electron microscope, using uranyl acetate as a negative stain. The area stained by the uranyl acetate will be ______ electron dense compared to specimen itself.

A. more

B. less

C. equally

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 3. Apply

Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light microscopes

Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and

electron cryotomography Section: 02.04 Topic: Microscopy

Topic: Preparing Microscopy Specimens

- 65. If you forgot the decolorization step while performing a Gram stain, which outcome would you expect?
- A. Gram-positive bacteria would stain pink.
- **B.** Gram–negative bacteria would stain purple.
- C. Gram-negative bacteria would be unstained.
- D. Gram–positive bacteria would be unstained.

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 4. Analyze

Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure

Section: 02.03

- 66. If you forgot to apply the safranin counterstain while performing a Gram stain, which outcome would you expect?
- A. Gram-positive bacteria would stain pink.
- B. Gram-negative bacteria would stain purple.
- C. Gram-negative and Gram-positive bacteria would be unstained.
- **D.** Gram-negative bacteria would be unstained.

Blooms Level: 4. Analyze

Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure

Section: 02.03

Topic: Preparing Microscopy Specimens

- 67. Which type of microscopy would be preferred for creating a three dimensional view of the distribution and arrangement of flagella on a bacterial cell surface?
- A. Bright-field microscopy
- **B.** Scanning electron microscopy
- C. Fluorescence microscopy
- D. Transmission electron microscopy

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 3. Apply

Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and

electron cryotomography

Learning Outcome: 02.05.02 Evaluate light microscopy, electron microscopy, and scanning probe microscopy in terms of their uses,

resolution, and the quality of the images created

Section: 02.04 Section: 02.05 Topic: Microscopy

- 68. Which type of microscopy would be preferred for showing fine internal detail of the eukaryotic organelles?
- A. Bright-field microscopy
- B. Scanning electron microscopy
- C. Fluorescence microscopy
- **<u>D.</u>** Transmission electron microscopy

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast).

ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 3. Apply

Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and

electron cryotomography

Learning Outcome: 02.05.02 Evaluate light microscopy, electron microscopy, and scanning probe microscopy in terms of their uses,

resolution, and the quality of the images created

Section: 02.04 Section: 02.05 Topic: Microscopy

- 69. You are researching the structure of a transmembrane protein. Which type of microscopy would provide you the best view of this protein?
- A. Bright field microscopy
- B. Scanning electron microscopy
- C. Transmission electron microscopy
- **<u>D.</u>** Atomic force microscopy

ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills

Blooms Level: 3. Apply

Learning Outcome: 02.05.01 Distinguish scanning tunneling from atomic force microscopes in terms of how they create images and their uses

 $Learning\ Outcome:\ 02.05.02\ Evaluate\ light\ microscopy,\ electron\ microscopy,\ and\ scanning\ probe\ microscopy\ in\ terms\ of\ their\ uses,$

resolution, and the quality of the images created