Fill in the Blank Questions 1. The ______ is the point at which a lens focuses parallel beams of light. # focal point ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.01.02 Correlate lens strength and focal length Section: 02.01 Topic: Microscopy 2. The ______ is the distance between the center of a lens and the point at which it focuses parallel beams of light. # focal length ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.01.02 Correlate lens strength and focal length Section: 02.01 Topic: Microscopy # **True / False Questions** 3. Light rays are refracted (bent) when they cross the interface between materials with different refractive indices. ### **TRUE** ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.01.01 Relate the refractive indices of glass and air to the path light takes when it passes through a prism or convex lens Section: 02.01 Topic: Microscopy # **Multiple Choice Questions** - 4. Confocal microscopes exhibit improved contrast and resolution by - A. illumination of a large area of the specimen. - **<u>B.</u>** blocking out stray light with an aperture located above the objective lens. - C. use of light at longer wavelengths. - D. use of ultraviolet light to illuminate the specimen. $ASM\ Objective:\ 08.01\ Properly\ prepare\ and\ view\ specimens\ for\ examination\ using\ microscopy\ (bright\ field\ and,\ if\ possible,\ phase\ contrast).$ Blooms Level: 2. Understand Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the microscope Section: 02.02 Topic: Microscopy 5. A 30× objective and a 20× ocular produce a total magnification of A. 230×. B. 320×. C. 50×. **<u>D.</u>** 600×. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 3. Apply Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the microscope Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to examine a specimen | 6. A 45× objective and a 10× ocular produce a total magnification of | |--| | A. 900×. | | B. 55×. | | <u>C.</u> 450×. | | D. 145×. | | | | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 3. Apply | | Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the microscope Section: 02.02 | | Topic: Microscopy | | 7. A microscope that exposes specimens to ultraviolet, violet, or blue light and forms an image with the light emitted at a different wavelength is called a microscope. | | image with the light emitted at a different wavelength is called a microscope. A. phase-contrast | | B. dark-field | | C. scanning electron | | <u>D.</u> fluorescence | | | | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills | | Blooms Level: 1. Remember Learning Outcome: 02.02.03 Create a table that compares and contrasts the various types of light microscopes in terms of their uses, how images are created, and the quality of images produced Section: 02.02 | | Topic: Microscopy | | 8. Immersion oil can be used to increase the resolution achieved with some microscope lenses | | because it increases the between the specimen and the objective lens. | | A. optical density B. refractive index | | C. optical density and refractive index | | D. neither optical density nor refractive index | | | | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills | | Blooms Level: 2. Understand Learning Outcome: 02.01.01 Relate the refractive indices of glass and air to the path light takes when it passes through a prism or convex lens | | Section: 02.01 Topic: Microscopy | ### **True / False Questions** 9. A substage condenser is used to focus light onto the specimen, which increases the resolution of a light microscope. ### **TRUE** ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the microscope Section: 02.02 Topic: Microscopy ### Fill in the Blank Questions 10. The ______ is the distance between the specimen and the objective lens when the specimen is in focus. working distance ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the microscope Section: 02.02 Topic: Microscopy 11. The useful magnification of a light microscope is limited by the ______ of the light source being utilized. ### wavelength ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to examine a specimen | 12. The special dyes used in fluorescence microscopy that absorb light at one wavelength and emit light at a different wavelength are called fluorochromes | |--| | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). Blooms Level: 1. Remember Learning Outcome: 02.02.03 Create a table that compares and contrasts the various types of light microscopes in terms of their uses, how images are created, and the quality of images produced Section: 02.02 Topic: Microscopy | | 13. In order to view a specimen with a total magnification of $400\times$, a objective must be used if the ocular is $10\times$. $\underline{40\times}$ | | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 3. Apply Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the microscope Section: 02.02 Topic: Microscopy | # **True / False Questions** 14. Confocal microscopes, in combination with specialized computer software, can be used to create three-dimensional images of cell structures. # **TRUE** $ASM\ Objective:\ 08.01\ Properly\ prepare\ and\ view\ specimens\ for\ examination\ using\ microscopy\ (bright\ field\ and,\ if\ possible,\ phase\ contrast).$ $ASM\ Topic:\ Module\ 08\ Microbiology\ Laboratory\ Skills$ Blooms Level: 2. Understand Learning Outcome: 02.02.03 Create a table that compares and contrasts the various types of light microscopes in terms of their uses, how images are created, and the quality of images produced 15. A light microscope with an objective lens numerical aperture of 0.65 is capable of allowing two objects 400 nm apart to be distinguished when using light with a wavelength of 420 nm. ### **TRUE** ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 4. Analyze Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to examine a speciment Section: 02.02 Topic: Microscopy 16. Resolution improves when the wavelength of the illuminating light decreases. # **TRUE** ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 4. Analyze Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to examine a specimen Section: 02.02 Topic: Microscopy 17. Immersion oil is used to prevent a specimen from drying out. # **FALSE** ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the microscope 18. It is possible to build a light microscope capable of 10,000× magnification, but the image would not be sharp because resolution is independent of magnification. ### **TRUE** ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to examine a specimen Section: 02.02 Topic: Microscopy 19. Immersion oil increases the amount of light entering the objective lens. # **TRUE** ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to examine a specimen Section: 02.02 Topic: Microscopy # **Multiple Choice Questions** 20. If the objective lenses of a microscope can be changed without losing focus on the specimen, they are said to be A. equifocal. B. totifocal. C. parfocal. D. optifocal. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.02.01 Evaluate the parts of a light microscope in terms of their contributions to image production and use of the microscope | 21. An instrument that magnifies slight differences in the refractive index of cell structures is called a (n) microscope. A. phase-contrast B. electron C. fluorescence D. densitometric | |---| | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.02.03 Create a table that compares and contrasts the various types of light microscopes in terms of their uses, how images are created, and the quality of images produced Section: 02.02 Topic: Microscopy | | 22. The instrument that produces a bright image of the specimen against a dark background is called a (n) microscope. A. phase-contrast B. electron C. bright-field D. dark-field | | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.02.03 Create a table that compares and contrasts the various types of light microscopes in terms of their uses, how images are created, and the quality of images produced Section: 02.02 Topic: Microscopy | | 23. As the magnification of a series of objective lenses increases, the working distance A. increases. B. decreases. C. stays the same. D. cannot be predicted. | | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 4. Analyze Learning Outcome: 02.01.02 Correlate lens strength and focal length Section: 02.01 Topic: Microscopy | - 24. Prior to staining, smears of microorganisms are heat-fixed in order to - A. allow eventual visualization of internal structures. - B. ensure removal of dust particles from the slide surface. - **C.** attach it firmly to the slide. - D. create small pores in cells that facilitates binding of stain to cell structures. Blooms Level: 2. Understand Learning Outcome: 02.03.01 Recommend a fixation process to use when the microbe is a bacterium or archaeon and when the microbe is a protist Section: 02.03 Topic: Preparing Microscopy Specimens 25. Acid-fast organisms such as *Mycobacterium tuberculosis* contain _____ constructed from mycolic acids in their cell walls. A. proteins B. carbohydrates C. lipids D. peptidoglycan ASM Objective: 02.01 The structure and function of microorganisms have been revealed by the use of microscopy (including bright field, phase contrast, fluorescent, and electron). ASM Objective: 02.02 Bacteria have unique cell structures that can be targets for antibiotics, immunity and phage infection. ASM Topic: Module 02 Cell Structure and Function Blooms Level: 2. Understand Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Section: 02.03 Topic: Mycobacteria Topic: Preparing Microscopy Specimens 26. In the Gram-staining procedure, the primary stain is A. iodine. B. safranin. **C.** crystal violet. D. alcohol. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 ### 27. In the Gram-staining procedure, the decolorizer is A. iodine. B. safranin. C. crystal violet. **D.** ethanol or acetone. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 Topic: Preparing Microscopy Specimens ### 28. In the Gram-staining procedure, the counterstain is A. iodine. B. safranin. C. crystal violet. D. alcohol. ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 Topic: Identifying Microorganisms Topic: Preparing Microscopy Specimens ### 29. In the Gram-staining procedure, the mordant is A. iodine. B. safranin. C. crystal violet. D. alcohol. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 | 30. After the primary stain has been added but positive organisms are stained at | = | |--|---| | A. purple; purple B. purple; colorless C. purple; pink D. pink; pink | | | ASM Topic: Module 08 Microbiology Laboratory Skills
Blooms Level: 4. Analyze | umination using microscopy (bright field and, if possible, phase contrast).
rive and Gram-negative bacterial cells at each step of the Gram-staining | | 31. After the decolorizer has been added, gran and gram-negative organisms are stained A. purple; purple purple; colorless C. purple; pink D. pink; pink | | | ASM Topic: Module 08 Microbiology Laboratory Skills
Blooms Level: 4. Analyze | mination using microscopy (bright field and, if possible, phase contrast). ive and Gram-negative bacterial cells at each step of the Gram-staining | | 32. After the secondary stain has been added, gram-positive organisms are stained and gram-negative organisms are stained | |--| | A. purple; purple | | B. purple; colorless | | C. purple; pink | | D. pink; pink | | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast ASM Topic: Module 08 Microbiology Laboratory Skills | | Blooms Level: 4. Analyze Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 Topic: Preparing Microscopy Specimens | | 33. If the decolorizer is left on too long in the Gram-staining procedure, gram-positive organisms will be stained and gram-negative organisms will be stained | | A. purple; blue | | B. purple; colorless | | C. purple; pink | | D. pink; pink | | | | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast ASM Topic: Module 08 Microbiology Laboratory Skills | ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 4. Analyze Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 Topic: Preparing Microscopy Specimens 34. If the decolorizer is not left on long enough in the Gram-staining procedure, gram-positive organisms will be stained _____ and gram-negative organisms will be stained A. purple; purple B. purple; colorless C. purple; pink D. pink; pink ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 4. Analyze Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 Topic: Preparing Microscopy Specimens 35. Which of the following is considered to be a differential staining procedure? A. Gram stain B. Acid-fast stain C. Both Gram stain and Acid-fast stain # D. Leifson's flagella stain $ASM\ Objective:\ 08.01\ Properly\ prepare\ and\ view\ specimens\ for\ examination\ using\ microscopy\ (bright\ field\ and,\ if\ possible,\ phase\ contrast).$ ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 Topic: Identifying Microorganisms Topic: Preparing Microscopy Specimens - 36. Basic dyes such as methylene blue bind to cellular molecules that are - A. hydrophobic. - **B.** negatively charged. - C. positively charged. - D. aromatic. Blooms Level: 2. Understand Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Section: 02.03 Topic: Preparing Microscopy Specimens ### **True / False Questions** 37. Gram staining divides bacterial species into two groups based on differences in cell wall structure. # **TRUE** ASM Objective: 02.01 The structure and function of microorganisms have been revealed by the use of microscopy (including bright field, phase contrast, fluorescent, and electron). ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 02 Cell Structure and Function ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 Topic: Bacterial Cellular Morphology Topic: Preparing Microscopy Specimens # 38. Negative staining facilitates the visualization of bacterial capsules that are intensely stained by the procedure. ### **FALSE** ASM Objective: 02.01 The structure and function of microorganisms have been revealed by the use of microscopy (including bright field, phase contrast, fluorescent, and electron). ASM Objective: 02.03 Bacteria and Archaea have specialized structures (e.g. flagella, endospores, and pili) that often confer critical capabilities. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 02 Cell Structure and Function ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Section: 02.03 Topic: Bacterial Cellular Morphology Topic: Microscopy Topic: Preparing Microscopy Specimens # 39. Negative staining with India ink can be used to reveal the presence of capsules that surround bacterial cells. #### **TRUE** ASM Objective: 02.01 The structure and function of microorganisms have been revealed by the use of microscopy (including bright field, phase contrast, fluorescent, and electron). ASM Objective: 02.03 Bacteria and Archaea have specialized structures (e.g. flagella, endospores, and pili) that often confer critical capabilities. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 02 Cell Structure and Function ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Section: 02.03 Topic: Bacterial Cellular Morphology Topic: Microscopy Topic: Preparing Microscopy Specimens ### 40. Mordants increase the binding between a stain and specimen. ### **TRUE** ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Section: 02.03 Topic: Microscopy 41. In order to stain flagella so that they may be readily observed by light microscopy, it is usually necessary to increase their thickness. ### **TRUE** ASM Objective: 02.01 The structure and function of microorganisms have been revealed by the use of microscopy (including bright field, phase contrast, fluorescent, and electron). ASM Objective: 02.03 Bacteria and Archaea have specialized structures (e.g. flagella, endospores, and pili) that often confer critical capabilities. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 02 Cell Structure and Function ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Section: 02.03 Topic: Bacterial Cellular Morphology Topic: Microscopy Topic: Preparing Microscopy Specimens ### Fill in the Blank Questions 42. The procedure in which a single stain is used to visualize microorganisms is called ______ staining. ### simple ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Section: 02.03 Topic: Microscopy Topic: Preparing Microscopy Specimens 43. ______ is the process by which internal and external structures of cells and organisms are preserved and maintained in position. ### **Fixation** ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.03.01 Recommend a fixation process to use when the microbe is a bacterium or archaeon and when the microbe is a protist Section: 02.03 Topic: Bacterial Cellular Morphology Topic: Preparing Microscopy Specimens | 44. Thin films of bacteria that have been air-dried onto a glass microscope slide are called | | | |---|--|--| | <u>smears</u> | | | | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Section: 02.03 Topic: Microscopy Topic: Preparing Microscopy Specimens | | | | 45. A procedure that divides organisms into two or more groups depending on their individual reactions to the same staining procedure is referred to as staining. differential | | | | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 1. Remember Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Section: 02.03 Topic: Microscopy Topic: Preparing Microscopy Specimens | | | | Multiple Choice Questions | | | | 46. The Gram-staining procedure is an example of A. simple staining B. negative staining C. differential staining D. fluorescent staining | | | | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 Topic: Preparing Microscopy Specimens | | | # **True / False Questions** 47. The Gram-staining procedure is widely used because it allows rapid identification of a microorganism with little additional testing. # **FALSE** ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 3. Apply Learning Outcome: 02.03.02 Plan a series of appropriate staining procedures to describe an unknown bacterium as fully as possible Section: 02.03 Topic: Identifying Microorganisms Topic: Preparing Microscopy Specimens # **Multiple Choice Questions** | 48. Regions of a specimen wi | th higher electron density scatter | electrons and, | |------------------------------|---------------------------------------|-----------------------| | therefore, appear | _ in the image projected onto the scr | een of a transmission | | electron microscope. | | | | A. more; lighter | | | | B. more; darker | | | | C. fewer; darker | | | | D. fewer; lighter | | | ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light microscopes Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and $electron\ cryotomography$ Section: 02.04 Topic: Microscopy Topic: Preparing Microscopy Specimens # **True / False Questions** 49. Because transmission electron microscopy uses electrons rather than light, it is not necessary to stain biological specimens before observing them. ### **FALSE** ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light microscopes Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and electron cryotomography Section: 02.04 Topic: Microscopy Topic: Preparing Microscopy Specimens 50. Scanning electron microscopes bombard specimens with a stream of electrons; however, the specimen image is produce by electrons that are derived from atoms of the specimen itself rather than by the electrons used to bombard the specimen. ### **TRUE** ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light microscopes Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and electron cryotomography Section: 02.04 Topic: Microscopy Topic: Preparing Microscopy Specimens 51. It was possible to view viruses only after the invention of the electron microscope because they are too small to be seen with a light microscope. ### **TRUE** ASM Objective: 02.01 The structure and function of microorganisms have been revealed by the use of microscopy (including bright field, phase contrast, fluorescent, and electron). ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 02 Cell Structure and Function ASM Topic: Module 02 Cell Structure and Function ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light microscopes Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and electron cryotomography ### Fill in the Blank Questions 52. An electron microscope uses ______ lenses to focus beams of electrons onto a specimen. magnetic ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light microscopes Section: 02.04 Topic: Microscopy # **Multiple Choice Questions** 53. Scanning electron microscopy is most often used to reveal **A.** surface structures. B. internal structures. C. both surface and internal structures simultaneously. D. either surface or internal structures, but not simultaneously. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and electron cryotomography - 54. Small internal cell structures are best visualized with a - A. light microscope. - B. dark-field microscope. - <u>C.</u> transmission electron microscope. - D. flagellar microscope. Blooms Level: 2. Understand Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and electron cryotomography Section: 02.04 Topic: Bacterial Cellular Morphology Topic: Microscopy - 55. In transmission electron microscopy, spreading a specimen out in a thin film with uranyl acetate, which does not penetrate the specimen, is called - A. freeze-etching. - B. simple staining. - C. shadow staining. # **D.** negative staining. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light microscopes Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and electron cryotomography Section: 02.04 Topic: Microscopy Topic: Preparing Microscopy Specimens ### Fill in the Blank Questions | | s frozen specimens along lines of greatest weakness, often down the
membranes so that they may be observed by transmission electron | |--|---| | ASM Topic: Module 08 Microbio
Blooms Level: 2. Understand | ide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and | | 57. The when they are immers Scanning tunneling | microscope is capable of atomic resolution of specimens, even ed in water. | | ASM Topic: Module 08 Microbio
Blooms Level: 2. Understand | repare and view specimens for examination using microscopy (bright field and, if possible, phase contras
logy Laboratory Skills
inguish scanning tunneling from atomic force microscopes in terms of how they create images and their | | 58. The designer of the awarded the 1986 No. Ernst Ruska | e first transmission electron microscope,, was sel Prize in physics. | | ASM Topic: Module 08 Microbio
Blooms Level: 1. Remember | repare and view specimens for examination using microscopy (bright field and, if possible, phase contras
logy Laboratory Skills
ide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and | # **Multiple Choice Questions** - 59. Atomic force microscopes use a scanning probe that maintains a fixed distance from the surface of the specimen. It is useful for specimens that - **A.** do not conduct electricity well. - B. have extremely uneven surfaces. - C. both do not conduct electricity well and have extremely uneven surfaces are correct. - D. neither do not conduct electricity well nor have extremely uneven surfaces is correct. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.05.01 Distinguish scanning tunneling from atomic force microscopes in terms of how they create images and their uses Section: 02.05 Topic: Microscopy # **True / False Questions** 60. Scanning tunneling electron microscopes create a three-dimensional image of specimens at atomic level resolution. ### **TRUE** ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 2. Understand Learning Outcome: 02.05.01 Distinguish scanning tunneling from atomic force microscopes in terms of how they create images and their uses Section: 02.05 Topic: Microscopy # **Multiple Choice Questions** - 61. If immersion oil was replaced with water, what would happen? - A. The refractive index would increase, improving resolution. - **<u>B.</u>** The refractive index of water would be greater than air but less than oil, improving resolution less than oil. - C. The refractive index of water would be less than that of air, decreasing resolution. - D. There would be no difference. Blooms Level: 4. Analyze Learning Outcome: 02.02.02 Predict the relative degree of resolution based on light wavelength and numerical aperture of the lens used to examine a specimen Section: 02.02 Topic: Microscopy 62. As the resolution of a microscope system improves, the size of the smallest object that can be seen clearly A. is larger. **B.** is smaller. C. is not affected. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 3. Apply Section: 02.02 Topic: Microscopy - 63. If you forgot to heat fix a smear before doing a Gram stain, which of the following might occur? - A. The stains would not adhere to the bacteria. - **B.** The smear may not adhere to the slide. - C. The decolorization step of the Gram stain would not work properly. - D. Gram-positive and Gram-negative bacteria would both stain purple. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 4. Analyze Learning Outcome: 02.03.01 Recommend a fixation process to use when the microbe is a bacterium or archaeon and when the microbe is a protisi Provision Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 Topic: Microscopy 64. A specimen has been prepared for viewing with a transmission electron microscope, using uranyl acetate as a negative stain. The area stained by the uranyl acetate will be ______ electron dense compared to specimen itself. A. more B. less C. equally ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 3. Apply Learning Outcome: 02.04.01 Create a concept map, illustration, or table that compares transmission electron microscopes (TEMs) to light microscopes Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and electron cryotomography Section: 02.04 Topic: Microscopy Topic: Preparing Microscopy Specimens - 65. If you forgot the decolorization step while performing a Gram stain, which outcome would you expect? - A. Gram-positive bacteria would stain pink. - **B.** Gram–negative bacteria would stain purple. - C. Gram-negative bacteria would be unstained. - D. Gram–positive bacteria would be unstained. ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 4. Analyze Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 - 66. If you forgot to apply the safranin counterstain while performing a Gram stain, which outcome would you expect? - A. Gram-positive bacteria would stain pink. - B. Gram-negative bacteria would stain purple. - C. Gram-negative and Gram-positive bacteria would be unstained. - **D.** Gram-negative bacteria would be unstained. Blooms Level: 4. Analyze Learning Outcome: 02.03.03 Compare what happens to Gram-positive and Gram-negative bacterial cells at each step of the Gram-staining procedure Section: 02.03 Topic: Preparing Microscopy Specimens - 67. Which type of microscopy would be preferred for creating a three dimensional view of the distribution and arrangement of flagella on a bacterial cell surface? - A. Bright-field microscopy - **B.** Scanning electron microscopy - C. Fluorescence microscopy - D. Transmission electron microscopy ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 3. Apply Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and electron cryotomography Learning Outcome: 02.05.02 Evaluate light microscopy, electron microscopy, and scanning probe microscopy in terms of their uses, resolution, and the quality of the images created Section: 02.04 Section: 02.05 Topic: Microscopy - 68. Which type of microscopy would be preferred for showing fine internal detail of the eukaryotic organelles? - A. Bright-field microscopy - B. Scanning electron microscopy - C. Fluorescence microscopy - **<u>D.</u>** Transmission electron microscopy ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 3. Apply Learning Outcome: 02.04.02 Decide when it would be best to examine a microbe by TEM, scanning electron microscopy (SEM), and electron cryotomography Learning Outcome: 02.05.02 Evaluate light microscopy, electron microscopy, and scanning probe microscopy in terms of their uses, resolution, and the quality of the images created Section: 02.04 Section: 02.05 Topic: Microscopy - 69. You are researching the structure of a transmembrane protein. Which type of microscopy would provide you the best view of this protein? - A. Bright field microscopy - B. Scanning electron microscopy - C. Transmission electron microscopy - **<u>D.</u>** Atomic force microscopy ASM Objective: 08.01 Properly prepare and view specimens for examination using microscopy (bright field and, if possible, phase contrast). ASM Topic: Module 08 Microbiology Laboratory Skills Blooms Level: 3. Apply Learning Outcome: 02.05.01 Distinguish scanning tunneling from atomic force microscopes in terms of how they create images and their uses $Learning\ Outcome:\ 02.05.02\ Evaluate\ light\ microscopy,\ electron\ microscopy,\ and\ scanning\ probe\ microscopy\ in\ terms\ of\ their\ uses,$ resolution, and the quality of the images created