Chapter 1

1.1

a) One dimensional, multichannel, discrete time, and digital.
b) Multi dimensional, single channel, continuous-time, analog.
¢) One dimensional, single channel, continuous-time, analog.
d) One dimensional, single channel, continuous-time, analog.
e) One dimensional, multichannel, discrete-time, digital.
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= 5 = periodic with N,, = 2.
= (37 = non-periodic.
=% (3) = % = periodic with IV, = 10.

a) Periodic with period T}, = 2F.
b) f = % = non-periodic.
¢) f = 13- = non-periodic.
d) cos(g) is non-periodic; cos(’g*) is periodic; Their product is non-periodic.
T2) is periodic with period N,=4
) is periodic with period N,=16
cos("* + %) is periodic with period N,=8
Therefore, x(n) is periodic with period N,=16. (16 is the least common multiple of 4,8,16).

1.4

(a) w = 2 implies that f = £. Let

a= GCD of (k,N), ie.,
k=FKa,N=Na.
Then,

/

f:ﬁ7

which implies that

v
=
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(c)
N 16
k =
GCD(k,N) =
N,

1.5

(a) Refer to fig 1.5-1
(b)
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Figure 1.5-1:
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Figure 1.5-2:

(c)Refer to fig 1.5-2
x(n):{O 3.3 0,3 fi},szﬁ.

P2 V2 V2' V2
(d) Yes.
100
x(1) = 3 = 3sin( FW) = F, = 200 samples/sec.
1.6
(a)

z(n) = Acos(2nEFyn/Fs+0)

= Acos(2n(T/T,)n +6)

But T/T, = f = x(n) is periodic if f is rational.
(b) If x(n) is periodic, then f=k/N where N is the period. Then,

k
Ti=(5T) = k(%)T = kT,

Thus, it takes k periods (kT},) of the analog signal to make 1 period (7) of the discrete signal.
(¢c) Ty =kT, = NT =kT, = f =k/N =T/T, = fis rational = x(n) is periodic.

1.7

(a) Fmax = 10kHz = Fy > 2Fmax = 20kH z.
(b) For Fy = 8kHz, Fyyq = Fs/2 = 4kHz = 5kHz will alias to 3kHz.
(c) F=9kHz will alias to 1kHz.

1.8

(a) Fmax = 100]€HZ, Fs > 2Fmax = 200H z.
(b) Fyojq = % = 125Hz.
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1.9

(a) Fmax = 360H2, FN = 2Fmax = T720Hz.
(b) Ffold = % = 300H z.
c
z(n) = x4(nT)
za(n/Fs)
= sin(4807mn/600) + 3sin(7207n/600)

z(n) = sin(4nn/5) — 3sin(4mn/5)
—2sin(4mn/5).
Therefore, w = 47 /5.
(d) ya(t) = x(Fst) = —2sin(4807t).
1.10
(a)
Number of bits/sample = log21024 = 10.
[10, 000 bits/sec]
F, = .
[10 bits/sample]
= 1000 samples/sec.
Ffold = bH00Hz.
(b)
18007
Fmax =
27
= 900Hz
Fny = 2Fmax = 1800Hz.
()
6007 , 1
i = ?(E)
= 0.3
18007 , 1
f2 = o (FS)
= 0.9
But fo = 0.9>05= fo=0.1.
Hence, z(n) = 3cos[(2m)(0.3)n] + 2cos[(27)(0.1)n]
TMaX — %y -
(d) A= T = 515235) = ﬁg:’,'
1.11
x(n) = x4(nT)
— 3c0s 1007n 4 9sin 2507n
N 200 200
6
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3
= 3cos (%) — 2sin (T)

1
T/ — — T/
s = () = (1) T)
w1000t . ( 3m1000¢
= 3cos —2sin | ———
2 4
Yao(t) = 3cos(500mt) — 2sin(750mt)
1.12
(a) For Fy = 300H z,
z(n) = 3cos (%) + 10sin(mn) — cos (%n>
™ ™
= 3cos (?> — 3cos (?)
(b) x,(t) = 3cos(100007t/6) — cos(100007t/3)
1.13
(a)
Range = ZImax — Typin — 12.7.
range
=1
m + A
= 12741 =128 = log,(128)
7 bits.
(b) m =1+ 127 = 636 = log2(636) = 10 bit A/D.
1.14
. les e
R = (20 samp es) y bits
sec sample
= 160%
sec
Fs
FfOld = ? =10Hz.
1volt
luti =
Resolution 28 1
= 0.004
1.15

(a) Refer to fig 1.15-1. With a sampling frequency of 5kHz, the maximum frequency that can be
represented is 2.5kHz. Therefore, a frequency of 4.5kHz is aliased to 500Hz and the frequency of
3kHz is aliased to 2kHz.
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Fs = 5KHz, FO=500Hz Fs = 5KHz, FO=2000Hz
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Fs = 5KHz, FO=3000Hz Fs = 5KHz, FO=4500Hz
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Figure 1.15-1:

(b) Refer to fig 1.15-2. y(n) is a sinusoidal signal. By taking the even numbered samples, the
sampling frequency is reduced to half i.e., 25kHz which is still greater than the nyquist rate. The
frequency of the downsampled signal is 2kHz.

1.16

(a) for levels = 64, using truncation refer to fig 1.16-1.
for levels = 128, using truncation refer to fig 1.16-2.
for levels = 256, using truncation refer to fig 1.16-3.
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FO = 2KHz, Fs=50kHz
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Figure 1.15-2:

levels = 64, using truncation, SQNR = 31.3341dB
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Figure 1.16-1:
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levels = 128, using truncation, SQNR = 37.359dB

1 1
0.5 0.5
G S
< g
A 0 A 0
| |
|
-0.5 -0.5
-1 -1
0 50 100 150 200 0 50 100 150 200
-=>n -=>n
0
-0.005
=
()
A -0.01
|
-0.015
-0.02
0 50 100 150 200
Figure 1.16-2:
levels = 256, using truncation, SQNR=43.7739dB
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Figure 1.16-3:
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(b) for levels = 64, using rounding refer to fig 1.16-4.
for levels = 128, using rounding refer to fig 1.16-5.
for levels = 256, using rounding refer to fig 1.16-6.

levels = 64, using rounding, SQNR=32.754dB
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Figure 1.16-4:
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levels = 128, using rounding, SQNR=39.2008dB
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Figure 1.16-5:

levels = 256, using rounding, SQNR=44.0353dB
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Figure 1.16-6:
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(c¢) The sqnr with rounding is greater than with truncation. But the sqnr improves as the number
of quantization levels are increased.
(d)

levels 64 128 256

theoretical sqnr 43.9000 49.9200 55.9400

sqnr with truncation 31.3341 37.359  43.7739

sqnr with rounding ~ 32.754  39.2008 44.0353

The theoretical sqnr is given in the table above. It can be seen that theoretical sqnr is much
higher than those obtained by simulations. The decrease in the sqnr is because of the truncation
and rounding.
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