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P1 SOLUTIONS TO PROBLEMS

ELECTROSTATIC FIELD IN FREE SPACE

Section 1.1 Coulomb’s Law

PROBLEM 1.1 Three unequal charges in a triangle. (a) The new situation
is shown in Fig.P1.1(a), where charge 2 is now assumed to be 3Q. From Coulomb’s
law, Eq.(1.1), magnitudes of the individual partial electric forces that charges 1, 2,
and 3 exert on one another are

Fe12 = Fe21 = Fe23 = Fe32 =
3Q2

4πε0a2
, Fe13 = Fe31 =

Q2

4πε0a2
, (P1.1)

and all forces are repulsive. In the adopted xy-coordinate system, the resultant
force on charge 1 is expressed as

Fe1 = Fe21 + Fe31 = Fe21 cos 60◦(− x̂) + Fe21 sin 60◦(− ŷ) + Fe31(− x̂)

= − Q2

8πε0a2
(5 x̂ + 3

√
3 ŷ) . (P1.2)

Its magnitude, as well as the magnitude of the resultant force on charge 3, and the
angle α in Fig.P1.1(a), determining the direction of both vectors Fe1 and Fe3, come
out to be
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Figure P1.1 The same as in Fig.1.3(a) but with one of the point charges amounting
to (a) 3Q and (b) −3Q.
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2 Branislav M. Notaroš: Electromagnetics (Pearson Prentice Hall)

Fe1 = Fe3 =
Q2

8πε0a2

√

52 + (3
√

3)2 =

√
13Q2

4πε0a2
, α = arctan

3
√

3

5
= 46.1◦ (P1.3)

(arctan ≡ tan−1).
The resultant electric force on charge 2 is, as in Fig.1.3(b) and Eq.(1.10), given

by

Fe2 = 2Fe12 cos 30◦ = Fe12

√
3 =

3
√

3Q2

4πε0a2
, (P1.4)

and Fe2 is directed upward (perpendicularly to the opposite side of the equilateral
triangle), that is, Fe2 = Fe2 ŷ, in Fig.P1.1(a).

(b) For charge 2 amounting to −3Q, Fig.P1.1(b), we have

Fe1 = Fe21 cos 60◦ x̂ + Fe21 sin 60◦ ŷ + Fe31(− x̂) =
Q2

8πε0a2
( x̂ + 3

√
3 ŷ) , (P1.5)

and hence

Fe1 = Fe3 =
Q2

8πε0a2

√

1 + (3
√

3)2 =

√
7Q2

4πε0a2
, β = arctan 3

√
3 = 79.1◦ . (P1.6)

The force Fe2 (magnitude) is the same as in Eq.(P1.4), and the direction of Fe2

is downward, Fe2 = Fe2(− ŷ).

PROBLEM 1.2 Three charges in equilibrium. The resultant Coulomb force
on charge 3 in Fig.1.50 being zero, we have that

Fe3 = Fe13 + Fe23 = 0 −→ Fe13 = Fe23 −→ Q1Q3

4πε0d2
=

Q2Q3

4πε0(D − d)2

−→ (D − d)2 =
Q2

Q1
d2 −→ D − d = ±

√

Q2

Q1
d −→ d = 2 cm , (P1.7)

where we eliminate the other solution, d = 6 cm, because d < D.
From the condition that the total force on charge 1 must also be zero,

Fe21 + Fe31 = 0 −→ Q1Q2

4πε0D2
= − Q1Q3

4πε0d2
−→ Q3 = − d2

D2
Q2 = −4 pC .

The condition Fe2 = 0 gives the same result.

PROBLEM 1.3 Four charges at rectangle vertices. With reference to
Fig.P1.2,

Fe14 = Fe14 x̂ , Fe14 =
Q2

4πε0a2
, (P1.8)

Fe24 = Fe24 cosα x̂ + Fe24 sinα ŷ , Fe24 =
Q2

4πε0c2
,

c =
√

a2 + b2 , cosα =
a

c
, sinα =

b

c
, (P1.9)
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P1. Solutions to Problems: Electrostatic Field in Free Space 3

Fe34 = Fe34 ŷ , Fe34 =
Q2

4πε0b2
, (P1.10)

so that the total electric force on charge 4 amounts to

Fe4 = Fe14 + Fe24 + Fe34 =
Q2

4πε0

[(
1

a2
+
a

c3

)

x̂ +

(
b

c3
+

1

b2

)

ŷ

]

= (9.637 x̂ + 24.48 ŷ) µN . (P1.11)

The magnitude of this vector comes out to be |Fe4| = 26.31 µN; Fe4 makes an angle
of β = 68.5◦ with the x-axis (Fig.P1.2).
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Figure P1.2 Computing the electric forces on charges placed at vertices of a rect-
angle.

Similarly, the resultant forces on other charges are

Fe1 = (−9.637 x̂ + 24.48 ŷ) µN , Fe2 = −(9.637 x̂ + 24.48 ŷ) µN = −Fe4 ,

Fe3 = (9.637 x̂− 24.48 ŷ) µN = −Fe1 . (P1.12)

These vectors are also shown in Fig.P1.2.

PROBLEM 1.4 Five charges in equilibrium. Because of symmetry, the
resultant electric force on the charge (small ball) Q2 at the square center is zero,
as indicated in Fig.P1.3, so it is always in the electrostatic equilibrium, regardless
of the actual value of Q2 (which is unknown). Because of symmetry as well, if we
find Q2 such that one of the four charges (balls) at the square vertices is in the
equilibrium, then this condition automatically applies to the remaining three balls
with charge Q1.

From Fig.P1.3,Q2 that makes the resultant force on the lower left charge (charge
1) be zero obviously must be negative and is obtained as follows:

Fe1 = Fe21 + Fe31 + Fe41 + Fe51 = 0 −→ 2Fe21 cos 45◦ + Fe31 = Fe51

−→ 2
Q2

1

4πε0a2

√
2

2
+

Q2
1

4πε0(
√

2a)2
= − Q1Q2

4πε0(
√

2a/2)2
(Q2 < 0)
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4 Branislav M. Notaroš: Electromagnetics (Pearson Prentice Hall)
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Figure P1.3 Finding the charge Q2 at the center of a square such that all the five
charges (small charged balls) are in the electrostatic equilibrium.

−→ Q2 = − (1 + 2
√

2)Q1

4
= −4.785 pC . (P1.13)

PROBLEM 1.5 Three point charges in space. (a) With reference to
Fig.P1.4(a), the partial electric force on the charge Q2 due to the charge Q1 is
computed as

Fe12 = Fe12 sin 45◦ x̂− Fe12 cos 45◦ ŷ =
Q1|Q2|
4πε0R2

√
2

2
( x̂− ŷ) = 6.36( x̂− ŷ) mN .

(P1.14)
Of course, Fe12 = −Fe21, with Fe21 being given in Eq.(1.13) and Fig.1.5(b). Simi-
larly, the force on Q2 due to Q3 comes out to be [Fig.P1.4(a)]

Fe32 = −Fe32 cos 45◦ ŷ+Fe32 sin 45◦ ẑ =
Q3|Q2|
4πε0R2

√
2

2
(− ŷ+ ẑ) = 12.72(− ŷ+ ẑ) mN ,

(P1.15)
so that the resultant force on this charge equals

Fe2 = Fe12 + Fe32 = 6.36( x̂− 3 ŷ + 2 ẑ) mN . (P1.16)

Its magnitude is Fe2 = 6.36
√

1 + 32 + 22 mN = 23.8 mN.

(b) The force on the charge Q3 due to Q1, Fig.P1.4(b), amounts to

Fe13 = −Fe31 =
Q1Q3

4πε0R2

√
2

2
(− x̂ + ẑ) = 6.36(− x̂ + ẑ) mN , (P1.17)

and that due to Q2 is

Fe23 = −Fe32 = 12.72( ŷ− ẑ) mN . (P1.18)

The resultant force on Q3 is thus

Fe3 = Fe13 + Fe23 = 6.36(− x̂ + 2 ŷ − ẑ) mN , (P1.19)
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P1. Solutions to Problems: Electrostatic Field in Free Space 5
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Figure P1.4 Calculating the resultant electric forces on the charge Q2 (a) and Q3

(b) in the system with three unequal point charges in space in Fig.1.5(a).

and its magnitude is Fe3 = 6.36
√

1 + 22 + 1 mN = 15.6 mN.

(c) Combining Eqs.(1.16), (P1.16), and (P1.19), the sum of all the three resultant
forces, on the three charges in Fig.1.5(a), is zero, namely,

Fe1 + Fe2 + Fe3 = 6.36( ŷ− ẑ) mN + 6.36( x̂− 3 ŷ + 2 ẑ) mN

+6.36(− x̂ + 2 ŷ − ẑ) mN = 0 , (P1.20)

as expected. This is also obvious from

Fe1 + Fe2 + Fe3 = (Fe21 + Fe31) + (Fe12 + Fe32) + (Fe13 + Fe23)

= (Fe12 + Fe21) + (Fe13 + Fe31) + (Fe23 + Fe32) = 0 . (P1.21)

PROBLEM 1.6 Five charges at pyramid vertices. See Example 1.4. Sim-
ilarly to Eqs.(1.19)-(1.22), the resultant electric force on the top charge (charge 5)
is given by

Fe5 = Fe15 + Fe25 + Fe35 + Fe45 = 4 (|Fe15| cosα) (− ẑ) = −4
Q2

4πε0a2
cos 45◦ ẑ

= −
√

2Q2

2πε0a2
ẑ

(

sinα =
a
√

2/2

a
=

√
2

2
−→ α = 45◦

)

, (P1.22)
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6 Branislav M. Notaroš: Electromagnetics (Pearson Prentice Hall)

where the adopted z-axis coincides with the axis of the pyramid containing this
charge (vertical axis) and is directed upward.

PROBLEM 1.7 Eight charges at cube vertices. Referring to Fig.P1.5(a),
the resultant force on charge 8 of the cube due to charges 1, 2, and 3 equals

Q

Fe38
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Q
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Figure P1.5 Evaluation of the total electric force on one of the eight charges placed
at the vertices of a cube.

Fe18 + Fe28 + Fe38 = Fe18

√
3 r̂ =

√
3Q2

4πε0a2
r̂ (P1.23)

(the vector sum of three vectors of equal magnitudes that are orthogonal to each
other equals

√
3 times the magnitude of each of the vectors, in the same way the

space diagonal of the cube of edge length a equals a
√

3), with r̂ being the unit
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P1. Solutions to Problems: Electrostatic Field in Free Space 7

vector along the cube diagonal (containing charge 8) – the radial unit vector with
respect to the cube center. Similarly, Fig.P1.5(b) tells us that

Fe48 + Fe58 + Fe68 = 3Fe48 cosα r̂ = 3
Q2

4πε0(a
√

2)2

√

2

3
r̂ =

√
6Q2

8πε0a2
r̂

(

cosα =
square diagonal

cube diagonal
=
a
√

2

a
√

3
=

√

2

3

)

. (P1.24)

Note that this result can alternatively be obtained using the solution to Example
1.4, since vertices 4, 5, 6, and 8 of the cube in Fig.P1.5(b) form a regular tetrahedron
(with the edge length a

√
2). Finally, from Fig.P1.5(c),

Fe78 =
Q2

4πε0(a
√

3)2
r̂ =

Q2

12πε0a2
r̂ , (P1.25)

and hence the total electric force on charge 8

Fe8 =

7∑

i=1

Fei8 =
Q2

4πε0a2

(
√

3 +

√
6

2
+

1

3

)

r̂ . (P1.26)

Section 1.2 Definition of the Electric Field Intensity
Vector

PROBLEM 1.8 Electric field due to three point charges in space. (a)
Using Eq.(1.25), the electric field intensity vector at the coordinate origin (point
O) in Fig.1.5(a), produced by the three point charges, Q1, Q2, and Q3, which all
appear to be at a distance a = 1 m from the observation (field) point, is given by

E = E1 + E2 + E3 =
1

4πε0

[
Q1

a2
(− x̂) +

Q2

a2
(− ŷ) +

Q3

a2
(− ẑ)

]

= 9 (− x̂ + 2 ŷ − 2 ẑ) kV/m (Q2 < 0) . (P1.27)

Its magnitude is E = 9
√

1 + 22 + 22 kV/m = 27 kV/m. The direction of E is
determined by the unit vector ûE = −(1/3) x̂ + (2/3) ŷ − (2/3) ẑ, based on which,
we can, for instance, obtain the angles that E makes with the coordinate axes in
Fig.1.5(a).

(b) For the observation point defined by z = 100 m at the z-axis, since z ≫ R,
with R =

√
2 m being the distance between any two of the charges Q1, Q2, and

Q3 in Fig.1.5(a), the system of these three charges, considered as a single charged
object, is very small compared to the distance of the observation point from the
center of the system. Hence, the system can be treated as a single point charge
amounting to Qtot = Q1 + Q2 + Q3 = 1 µC. Because z ≫ R, we can place Qtot

at the coordinate origin in Fig.1.5(a), instead of the exact center of the system of
three charges, and Eq.(1.24) then gives the following for the electric field vector due
to the three charges at this observation point:

E ≈ Qtot

4πε0z2
ẑ = 0.9 ẑ V/m (z ≫ R) . (P1.28)
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8 Branislav M. Notaroš: Electromagnetics (Pearson Prentice Hall)

Section 1.3 Continuous Charge Distributions

PROBLEM 1.9 Nonuniform volume charge in a cylinder. We perform
a similar volume integration as in Fig.1.9 and Eq.(1.34) but adopting dv as the
volume of a thin cylindrical shell of radius r, thickness dr, and finite length l, with
r being the radial distance from the cylinder axis (0 ≤ r ≤ a). To compute dv,
the cylindrical shell can be flattened into a thin rectangular slab, with edges equal
to 2πr (circumference of the shell), l, and dr. The charge on the length l of the
cylinder thus amounts to

Q =

∫

v

ρ dv =

∫ a

r=0

ρ0

(

1− r

a

)

︸ ︷︷ ︸

ρ

2πr dr l
︸ ︷︷ ︸

dv

=
πρ0a

2l

3
. (P1.29)

Using Eq.(1.31), the charge per unit length of the cylinder is

Q′ =
Q

l
=
πρ0a

2

3
. (P1.30)

PROBLEM 1.10 Nonuniform volume charge in a cube. Adopting dv in
the form of a slice of the cube with thickness dx, the total charge of the cube turns
out to be

Q =

∫

v

ρ dv =

∫ a

x=0

ρ0 sin
(π

a
x
)

a2 dx
︸ ︷︷ ︸

dv

=
2ρ0a

3

π
. (P1.31)

PROBLEM 1.11 Nonuniform surface charge on a disk. From Eqs.(1.29),
the total charge of the disk is given by

Q =

∫

S

ρs dS =

∫ a

r=0

ρs0
r2

a2
︸ ︷︷ ︸

ρs

2πr dr
︸ ︷︷ ︸

dS

=
πρs0a

2

2
, (P1.32)

where dS is the surface area of an elemental ring of radius r (0 ≤ r ≤ a) and width
dr, computed as that of a thin strip of length equal to the ring circumference, 2πr,
and width dr (the ring can be straightened into a strip for this computation).

PROBLEM 1.12 Nonuniform line charge along a rod. Using the last ex-
pression in Eqs.(1.29) and the fact that dl = dx, the total charge of the rod comes
out to be

Q =

∫

l

Q′ dl =

∫ l

x=0

Q′
0

[

1− sin
(π

l
x
)]

dx = Q′
0l

(

1− 2

π

)

. (P1.33)
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P1. Solutions to Problems: Electrostatic Field in Free Space 9

Section 1.5 Electric Field Intensity Vector Due to
Given Charge Distributions

PROBLEM 1.13 Field maximum at the axis of a ring. From Eq.(1.44),
the algebraic intensity of the electric field vector (due to the charged ring) along the
z-axis in Fig.1.11 is given by

Ez(z) =
Qz

4πε0 (z2 + a2)
3/2

(Q > 0) . (P1.34)

We perform a standard procedure of equating to zero the derivative of Ez(z) with
respect to z, which yields

dEz
dz

= 0 −→ Q

4πε0

(
z2 + a2

)3/2 − z(3/2)
(
z2 + a2

)1/2
2z

(z2 + a2)
3 = 0

−→ z2 =
a2

2
−→ z = ± a√

2
, (P1.35)

where z = a/
√

2 corresponds to the maximum of the function Ez(z) in the domain
where it is positive (for 0 < z <∞), while at z = −a/

√
2 the negative function Ez(z)

(for −∞ < z < 0) is minimum, as shown in Fig.P1.6. However, at both locations
the field intensity |Ez(z)| reaches its maximum value, Emax =

√
3Q/(18πε0a

2).

0

2

4

-2

-4

-10 -5
0

5 10 15

Ez [V/m]

z
a

Q = 1 nC

0.707

-0.707

Figure P1.6 Plot of the algebraic intensity of the field vector E along the axis of
the charged ring (z-axis) in Fig.1.11.

PROBLEM 1.14 Point charge equivalent to a charged semicircle. Using
Eq.(1.51), the expression for the electric field intensity vector due to the charged
semicircle at an arbitrary point along the z-axis in Fig.1.12(a) can be written as

E =
Q

2πε0 (z2 + a2)3/2

(

− a
π

x̂ +
z

2
ẑ
)

, (P1.36)
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10 Branislav M. Notaroš: Electromagnetics (Pearson Prentice Hall)

with Q = Q′πa being the total charge of the semicircle. For |z| ≫ a, z2 + a2 ≈
z2,
√
z2 + a2 ≈ |z|, and a/|z|3 ≪ 1/z2, with which Eq.(P1.36) becomes [also see

Eq.(1.45)]

E ≈ Q

2πε0|z|3
(

− a
π

x̂ +
z

2
ẑ
)

=
Q

2πε0

(

− a

π|z|3 x̂ +
1

2z2

z

|z| ẑ
)

≈ Q

4πε0z2

z

|z| ẑ

(|z| ≫ a) , (P1.37)

where z/|z| = 1 for z > 0 and z/|z| = −1 for z < 0. So, indeed, as long as the electric
field at a very distant location along the z-axis in Fig.1.12(a), in both positive and
negative directions, is concerned, the semicircular line charge is equivalent to a point
charge Q placed at the coordinate origin.

PROBLEM 1.15 Charged contour of complex shape. Because of symmetry,
the electric field vectors at the point O due to the two linear parts of the contour
in Fig.1.51 cancel each other, E2 + E4 = 0, as indicated in Fig.P1.7. By means
of Eq.(1.51), on the other side, the field vectors at the same point due to the
semicircular parts of radii a and b are given, respectively, by

E1 =
Q′

2πε0a
x̂ and E3 = − Q′

2πε0b
x̂

[

Q′ =
Q

π(a+ b) + 2(b− a)

]

, (P1.38)

for the x-axis in Fig.P1.7, where Q′ stands for the line charge density of the contour.
The total electric field is thus

E = E1 + E3 =
Q(b− a)

2πε0ab [π(a+ b) + 2(b− a)] x̂ . (P1.39)

a

b

O

3333

4

1

2

E4

y

x

E1

E3

E2

E

Q'

Figure P1.7 Computing the electric field at the center (point O) of the uniformly
charged contour in Fig.1.51.

PROBLEM 1.16 Nonuniform line charge along a semicircle. (a) Since
Q′(φ) is an odd (sine) function of φ within the symmetric integration limits, −π/2
and π/2, the total charge of the semicircle is zero. Namely, as dl = a dφ in
Fig.1.12(a),

Q =

∫

l

Q′(φ) dl = Q′
0

∫ π/2

φ=−π/2
sinφ dφ = 0 . (P1.40)
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P1. Solutions to Problems: Electrostatic Field in Free Space 11

(b) Modifying Eqs.(1.48)-(1.50), we obtain

Ex = − a2

4πε0R3

∫ π/2

−π/2
Q′(φ) cosφ dφ = − Q′

0a
2

4πε0R3

∫ π/2

−π/2
sinφ cosφ dφ = 0 (P1.41)

(the integrand, sinφ cosφ, is a product of an odd and an even function in φ, which
results in an odd function, and hence the integral is zero),

Ey = − Q′
0a

2

4πε0R3

∫ π/2

−π/2
sin2 φ dφ = − Q′

0a
2

4πε0R3

∫ π/2

−π/2

1− cos 2φ

2
dφ

= − Q′
0a

2

8πε0R3

(
∫ π/2

−π/2
dφ−

∫ π/2

−π/2
cos 2φ dφ

)

= − Q′
0a

2

8ε0R3

(

R =
√

z2 + a2
)

,

(P1.42)

Ez =
az

4πε0R3

∫ π/2

−π/2
Q′(φ) dφ = 0 , (P1.43)

so that the electric field vector at the point P in Fig.1.12(a) comes out to be

E = − Q′
0a

2

8ε0 (z2 + a2)3/2
ŷ . (P1.44)

PROBLEM 1.17 Line charge along three-quarters of a circle. Let us
extend the semicircle in Fig.1.12(a) to a three-quarter circle such that the line charge
exists along the circle (of radius a) for −π ≤ φ ≤ π/2. Then, using Eqs.(1.48)-(1.50)
with z = 0 (the electric field is calculated at the arc center) and modified integration
limits, we have

Ex = − Q′

4πε0a

∫ π/2

φ=−π
cosφ dφ = − Q′

4πε0a
, Ey = − Q′

4πε0a

∫ π/2

−π
sinφ dφ

=
Q′

4πε0a
, and Ez = 0 −→ E =

Q

6πε0a2
(− x̂ + ŷ) , (P1.45)

where Q′ = 2Q/(3πa) is the line charge density along the arc (the arc length is
l = 3πa/2).

PROBLEM 1.18 Line charge along a quarter of a circle. This case differs
from that in Fig.1.12(a) and Eqs.(1.48)-(1.50) only in the integration limits. If we
place the quarter-circle such that it extends (along the circle of radius a) in the
range 0 ≤ φ ≤ π/2 in Fig.1.12(a), the electric field components due to this arc at
an arbitrary point along the z-axis are given by

Ex = − Q′a2

4πε0R3

∫ π/2

φ=0

cosφ dφ = − Q′a2

4πε0R3
, Ey = − Q′a2

4πε0R3

∫ π/2

0

sinφ dφ

= − Q′a2

4πε0R3
, Ez =

Q′az

4πε0R3

∫ π/2

0

dφ =
Q′az

8ε0R3
, (P1.46)
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12 Branislav M. Notaroš: Electromagnetics (Pearson Prentice Hall)

and the field vector is

E =
Q′a

4ε0 (z2 + a2)
3/2

(

− a
π

x̂− a

π
ŷ +

z

2
ẑ
)

. (P1.47)

PROBLEM 1.19 Semi-infinite line charge. We refer to Fig.P1.8, in place
of Fig.1.13, and use Eq.(1.56) with Q/l = Q′, d = |y|, x̂ = ŷ, ẑ = x̂, θ1 →
−π/2, sin θ2 = −x/

√

x2 + y2, and cos θ2 = |y|/
√

x2 + y2 to obtain the electric field
intensity vector at an arbitrary point (x, y) in the xy-plane:

E =
Q′

4πε0

[

1
√

x2 + y2
x̂ +

1

y

(

1− x
√

x2 + y2

)

ŷ

]

, (P1.48)

where y appears instead of |y| in the expression for the y-component of E because
it properly, together with ŷ, determines the actual direction of that component for
y < 0, as − ŷ/|y| in place of ŷ/|y|.

P( , )x y

y

x
Q'

q1

q2

O

x

y

Figure P1.8 Computing the electric field due to a semi-infinite line charge.

PROBLEM 1.20 Half-positive, half-negative infinite line charge. Using
the expression for the electric field due to a semi-infinite line charge from the pre-
vious problem, with x = 0 and y = d, the electric field vector at the point (0, d)
due to the positive semi-infinite line charge (extending along the negative part of
the x-axis) comes out to be

EQ′ =
Q′

4πε0d
( x̂ + ŷ) . (P1.49)

Note that this result can also be obtained by means of Eq.(1.56) with θ1 → −π/2
and θ2 = 0, along with other substitutions. Because of symmetry, the field vector
due to the negative semi-infinite line charge (extending for 0 < x <∞) equals

E−Q′ =
Q′

4πε0d
( x̂− ŷ) , (P1.50)
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P1. Solutions to Problems: Electrostatic Field in Free Space 13

and hence the total field

E = EQ′ + E−Q′ =
Q′

2πε0d
x̂ . (P1.51)

PROBLEM 1.21 Charged square contour. The electric field intensity at the
point P in Fig.P1.9 due to the charge along one of the square sides, E1, is given by
Eq.(1.56) with d = h =

√
3a/2 (height of an equilateral triangle of side length a),

θ1 = −π/6, and θ2 = π/6, so that

E1 =
Q′

4πε0
√

3a/2

[

sin
π

6
− sin

(

−π
6

)]

=
Q′

2
√

3πε0a
. (P1.52)

The total electric field vector at the point P is thus (Fig.P1.9)

E = 4E1 cosα ẑ = 4E1

√

1− sin2 α ẑ =
2
√

2Q′

3πε0a
ẑ , where sinα =

a/2

h
=

√
3

3
.

(P1.53)

Q'

O

P

z

E1z

a

h

a

a

q1
q2

a/2

E1

1

2 a

a

3

4

a

Figure P1.9 Evaluation of the electric field along the axis of a charged square
contour.

PROBLEM 1.22 Point charge equivalent to a charged disk. Assume that

z > 0 and let z ≫ a in Fig.1.14. Hence,
√
z2 + a2 ≈ z and Eq.(1.63) becomes

E =
ρs

2ε0

(

1− z√
a2 + z2

)

ẑ ≈ ρs

2ε0

(

1− z

z

)

ẑ = 0 , (P1.54)

which, of course, is too crude of an approximation. Rather, we first perform a
rationalization of the resulting fraction as follows:

E =
ρs

2ε0

(

1− z√
a2 + z2

)

=
ρs

2ε0

√
a2 + z2 − z√
a2 + z2

=
ρs

2ε0

√
a2 + z2 − z√
a2 + z2

√
a2 + z2 + z√
a2 + z2 + z

=
ρs

2ε0

(a2 + z2)− z2

√
a2 + z2(

√
a2 + z2 + z)

≈ ρs

2ε0

a2

z(z + z)
=

ρsπa
2

4πε0z2
=

Q

4πε0z2
, (P1.55)
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14 Branislav M. Notaroš: Electromagnetics (Pearson Prentice Hall)

which indeed is the field of a point charge Q = ρsπa
2 placed at the disk center. The

case z < 0 and |z| = −z ≫ a can be analyzed in a completely analogous manner.

PROBLEM 1.23 Field due to a nonuniformly charged disk. Using the
same notation as in Fig.1.14, Eq.(1.63) is now modified as follows:

E =
z

2ε0

∫ a

r=0

ρs(r)
dR

R2
ẑ =

ρs0z

2ε0a2

∫ a

r=0

r2
dR

R2
ẑ =

ρs0z

2ε0a2

∫ a

r=0

(R2 − z2)
dR

R2
ẑ

=
ρs0z

2ε0a2

(∫ a

r=0

dR− z2

∫ a

r=0

dR

R2

)

ẑ =
ρs0z

2ε0a2

[

R|ar=0 − z2

(

− 1

R

)∣
∣
∣
∣

a

r=0

]

ẑ

=
ρs0z

2ε0a2

(
√

a2 + z2 − |z|+ z2

√
a2 + z2

− z2

|z|

)

ẑ . (P1.56)

Note that in the case of a charged isolated metallic disk, the charge distribution
considered here is physically much more realistic than the one (uniform) in Example
1.10.

PROBLEM 1.24 Nonuniformly charged spherical surface. (a) As the
charge density function of the sphere is antisymmetrical with respect to the equa-
torial plane (plane θ = π/2), positive for 0 < θ < π/2 and negative, with the same
“waveform,” for π/2 < θ < π, the total charge of the sphere is zero. Alternatively,
this can be shown referring to Fig.1.16 and using Eqs.(1.29) and (1.65), which result
in the following integral for the total charge:

Q =

∫

S

ρs(θ) dS =

∫ π

θ=0

ρs0 sin 2θ 2πa2 sin θ dθ = 0 (P1.57)

(a product of an antisymmetrical (sin 2θ) and a symmetrical (sin θ) function in θ
with respect to the equatorial plane is an antisymmetrical function, and its integral
from 0 to π is zero).

(b) Because of the antisymmetry of the charge distribution of the sphere, the con-
tribution of its upper half (for 0 ≤ θ ≤ π/2) to the electric field vector (E) at the
sphere center (point O in Fig.1.16) is the same as the contribution of the lower half
(for π/2 ≤ θ ≤ π), and hence the resulting field integral from 0 to π equals twice
the integral from 0 to π/2 (over the upper hemisphere). Therefore, Eq.(1.67) gives

E = − 1

2ε0
2

∫ π/2

0

ρs(θ) sin θ cos θ dθ ẑ = − ρs0

2ε0

∫ π/2

0

sin2 2θ dθ ẑ

= − ρs0

2ε0

∫ π/2

0

1− cos 4θ

2
dθ ẑ = −πρs0

8ε0
ẑ . (P1.58)

PROBLEM 1.25 Infinite charged sheet with a circular hole. (a) To com-
pute the electric field intensity vector at an arbitrary point along the z-axis due
to the infinite charged sheet with a circular hole as an integral of individual fields
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P1. Solutions to Problems: Electrostatic Field in Free Space 15

due to elementary rings (as in Fig.1.14) making it, from the periphery of the hole
(r = a) to infinity (r → ∞), we simply change the integration limits in Eq.(1.63),
which yields

E =
ρsz

2ε0

∫ ∞

r=a

dR

R2
ẑ =

ρsz

2ε0

(

− 1

R

)∣
∣
∣
∣

∞

r=a

ẑ

︸ ︷︷ ︸

integrating dE due to elementary rings

=
ρsz

2ε0
√
a2 + z2

ẑ (−∞ < z <∞) .

(P1.59)

(b) Alternatively, we can represent the charge distribution of the infinite sheet with
the hole as a sum of charge distributions of an infinite sheet of continuous charge
with density ρs (e.g., positively charged, assuming ρs > 0) and a disk of charge
with density −ρs (negatively charged) and the same dimensions as the hole. By the
superposition principle, the electric field vector of the original (resultant) charge
distribution can then be obtained using Eqs.(1.64) and (1.63) (see Figs.1.15 and
1.14) as

E =
ρs

2ε0

z

|z| ẑ
︸ ︷︷ ︸

positive sheet

+
−ρs

2ε0

(
z

|z| −
z√

a2 + z2

)

ẑ

︸ ︷︷ ︸

negative disk

=
ρsz

2ε0
√
a2 + z2

ẑ

︸ ︷︷ ︸

sheet with hole

, (P1.60)

and this, of course, is the same result as in Eq.(P1.59).

PROBLEM 1.26 Force on a charged semicylinder due to a line charge.
By virtue of Newton’s third law, the law of action and reaction, the per-unit-length
electric force on the charged semicylinder due to the line charge in Fig.1.17(a), F′

e,
is equal in magnitude and opposite in direction to that on the line charge due the
semicylinder, i.e., that given in Eq.(1.71), and hence (Fig.P1.10)

F′
e = −Q

′ρs

πε0
x̂ . (P1.61)

f
a

x

y

P'

l

dQ'
dlf

rs

O

Q'

dFe
'

Fe
'

Figure P1.10 Evaluation [reverse to that in Fig.1.17(b)] of the per-unit-length
electric force (F′

e) on a charged semicylinder due to a line charge (of density Q′)
positioned along the semicylinder axis.

Alternatively, we can obtain the same result by summing (integrating) per-
unit-length electric forces on individual elemental strips, of width dl and equivalent
line charge density dQ′ (found in Example 1.13), constituting the semicylinder
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16 Branislav M. Notaroš: Electromagnetics (Pearson Prentice Hall)

[Fig.1.17(b)]. The magnitudes of these forces are

dF ′
e = dQ′E , where dQ′ = ρs dl = ρsa dφ and E =

Q′

2πε0a
, (P1.62)

with E standing for the electric field intensity vector due to the line charge of density
Q′ computed at the location of the elemental strip. Thus, as shown in Fig.P1.10
[also see Eq.(1.70)],

F′
e =

∫

l

dF′
e =

∫

l

dF ′
e cosφ (− x̂) = −Q

′ρs

2πε0

∫ π/2

φ=−π/2
cosφ dφ x̂ = −Q

′ρs

πε0
x̂ .

(P1.63)

PROBLEM 1.27 Charged strip. As this is a two-dimensional problem, we
solve it in a cross-sectional plane. Fig.P1.11 shows a cross section of the strip and
an arbitrary field point P, with the geometry of the problem being defined by angles
θ1 and θ2, and the perpendicular distance d of P from the plane of the strip. Note
the similarity of the figure with that in Fig.1.13, although the two geometries are
very different. We subdivide the structure into differentially narrow strips of width
dl = dy, and compute the associated elementary electric fields at the point P as in
Example 1.13:

dE =
ρs dy

2πε0R

(

R =
√

y2 + d2
)

. (P1.64)

We break the vector dE in Fig.P1.11 onto its x- and y-components (suitable for
integration),

dEx = dE cos θ , dEy = − dE sin θ , (P1.65)

which are then integrated along the width of the charged strip,

Ex =
ρs

2πε0

∫ y2

y=y1

cos θ dy

R
, Ey = − ρs

2πε0

∫ y2

y1

sin θ dy

R
. (P1.66)

rs

y

2

1

P'

y=y2

y=y1

O

y

dl

d

R

xdEx

dEy

q1

q2
q

R2

R1

dI

a

P

q

dE

Figure P1.11 Evaluation of the electric field at an arbitrary point in space (P)
due to an infinitely long uniformly charged strip of width a (cross-sectional view).
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P1. Solutions to Problems: Electrostatic Field in Free Space 17

The integration is performed invoking the relationships in Eqs.(4.43) and (4.44)
(in Chapter 4) to change the integration variable from y to θ, as follows [also see
Eqs.(4.45) and (4.46)]:

Ex =
ρs

2πε0

∫ θ2

θ=θ1

dθ =
ρs

2πε0
(θ2 − θ1) , Ey = − ρs

2πε0

∫ θ2

θ1

sin θ

cos θ
dθ

=
ρs

2πε0

∫ θ2

θ1

d(cos θ)

cos θ
=

ρs

2πε0
ln

cos θ2
cos θ1

=
ρs

2πε0
ln
R1

R2
, (P1.67)

where R1 and R2 stand for the distances of the point P from the starting and ending
points, respectively, of the line representing the cross section of the charged strip in
Fig.P1.11. The electric field vector at this point is hence

E =
ρs

2πε0

[

(θ2 − θ1) x̂ + ŷ ln
R1

R2

]

. (P1.68)

Note that E can also be expressed using the charge per unit length of the strip,
Q′ = ρsa.

PROBLEM 1.28 Two parallel oppositely charged strips. The electric field
intensity at the point A due to the charge of one of the strips, E1, is given by
E = ρs [(θ2 − θ1) x̂ + ŷ ln(R1/R2)] /(2πε0) (previous problem) with θ1 = −π/4,
θ2 = π/4, R1 = R2 (=

√
2a/2), as can be seen in Fig.P1.12. By means of the

superposition principle, the magnitude of the total electric field vector amounts to

E = 2E1 =
ρs

2ε0
, (P1.69)

with respect to the reference direction of E indicated in Fig.P1.12. Having in mind
Eq.(1.64) and Fig.1.15, we note that this is exactly a half of the field intensity
(E = ρs/ε0) that would be obtained if the two strips were of infinite widths (infinite
sheets of charge).

R2R1

rs

-rs

A d a=

q2q1

E

21 a1

2

Figure P1.12 Computing the electric field (at the point A) due to the two parallel
oppositely charged strips in Fig.1.52 (cross section of the structure).
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Section 1.6 Definition of the Electric Scalar
Potential

PROBLEM 1.29 Work in an electrostatic field. The work done by electric
forces in moving the charge Q = 1 nC along the straight line joining the two
points, O(0, 0, 0) and P(1 m, 1 m, 1 m), equals the work computed along any other
path between the points, so we choose the three-segment path shown in Fig.P1.13.
Based on Eqs.(1.73) and (1.23), we thus have

We =

∫ P

O

Fe · dl = Q

∫ P

O

E · dl = Q

(∫ a

x=0

Ex dx+

∫ a

y=0

Ey dy +

∫ a

z=0

Ez dz

)

= 10−9

(∫ 1

0

xdx+

∫ 1

0

y2 dy −
∫ 1

0

dz

)

J =

(
1

2
+

1

3
− 1

)

nJ = −166.7 pJ ,

(P1.70)
where a = 1 m and E · dl = E · dx x̂ = Ex x̂ · dx x̂ = Ex dx along the first segment
(along the x-axis) of the integration path, and similarly for the other two segments.

a = 1 m

a

x

y

z

O

a

P

Figure P1.13 Integration path for finding the work of electric forces in moving the
charge Q from the coordinate origin to the point P in the electrostatic field given
by E = (x x̂ + y2 ŷ − ẑ) V/m (x, y, z in m).

PROBLEM 1.30 Work in the field of a point charge. Using Eqs.(1.73) and
(1.23), the work is given by

We = Q2

∫ M2

M1

E1 · dl , (P1.71)

where E1 is the electric field vector due to the charge Q1 in Fig.1.53. The lines of
this field are radial with respect to the charge (the center of the square contour),
and that is why we adopt a convenient integration path shown in Fig.P1.14, which
consists of an arc of radius a/2 between points M1 and A and a straight line segment
between points A and M2, and obtain [also see the similar integration in Fig.1.23
and Eq.(1.86)]

We = Q2

(
∫ A

M1

E1 · dl +

∫ M2

A

E1 · dl
)

= Q2

∫
√

2a/2

r=a/2

E1(r) dr
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= Q2

∫
√

2a/2

a/2

Q1

4πε0r2
dr =

Q1Q2

4πε0

(
1

a/2
− 1√

2a/2

)

=
(2−

√
2)Q1Q2

4πε0a
= −526.5 nJ ,

(P1.72)
where the line integral along the arc is zero because E is perpendicular to dl during
the integration.

A

a

Q1

M1

M2

Q2

a

Figure P1.14 Integration path for finding the work done by electric forces in
carrying the charge Q2 between points M1 and M2 in the electric field due to the
charge Q1 in Fig.1.53.

Section 1.7 Electric Potential Due to Given Charge
Distributions

PROBLEM 1.31 Electric potential due to three point charges in space.
(a) Distances of the observation point (0, 0, 2m) (at the z-axis) from the three point
charges, Q1, Q2, and Q3, in Fig.1.5(a) are, respectively, R1 = R2 =

√
1 + 22 m =√

5 m andR3 = 1 m. By means of Eq.(1.81), the electric potential at this point (with
respect to the reference point at infinity) produced by the three charges amounts to

V = V1 + V2 + V3 =
1

4πε0

(
Q1

R1
+
Q2

R2
+
Q3

R3

)

= 13.95 kV . (P1.73)

(b) For the observation point (1m, 1m, 1m), R1 = R2 = R3 =
√

2 m, which, for R3,
for instance, can easily be obtained by realizing that this point, its projections on xz
and yz planes, and charge Q3 form a square of edge length 1 m, or, more formally,
as
√

(1− 0)2 + (1− 0)2 + (1− 1)2 m, based on Eq.(1.7). Hence, Eq.(P1.73) now
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gives V = 6.35 kV.

PROBLEM 1.32 Point charge and an arbitrary reference point. Accord-
ing to Fig.P1.15, we apply the same integration procedure as in Eq.(1.86) with only
difference being the expression for the field intensity, E = Q/(4πε0x

2) in place of
E = Q′/(2πε0x), which results in

V =

∫ M

P

E · dl +

∫ R

M

E · dl =

∫ rR

x=r

E dx =

∫ rR

r

Q

4πε0x2
dx =

Q

4πε0

(
1

r
− 1

rR

)

.

(P1.74)
Note that for rR →∞ (adopting a reference point at infinity), we, of course, obtain
the corresponding expression for the potential in Eq.(1.80).

Q

P

E
r

r
R

r E

M

V

dl
dl

R

x

Figure P1.15 Convenient integration path (consisting of an arc between points P
and M and a straight line segment between points M and R) for the evaluation of
the electric potential (at the point P) due to a point charge Q with respect to an
arbitrary reference point R.

PROBLEM 1.33 Potential due to a semicircular line charge. Similarly to
the integration in Eq.(1.85), the potential at the point P in Fig.1.12 is found as

V =
1

4πε0

∫

l

Q′ dl

R
=

Q′

4πε0R

∫

l

dl

︸ ︷︷ ︸

πa

=
Q′a

4ε0
√
z2 + a2

. (P1.75)

PROBLEM 1.34 Potential due to a charged disk. We use the same sub-
division of the disk into elemental rings as in Fig.1.14 and integrate the electric
potential due to these rings. Noting that the expression for the potential of a ring
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(of radius a) in Eq.(1.85) can be written as V = Q/(4πε0R), with Q = Q′2πa being
the total charge of the ring, the potential at the point P in Fig.1.14 due to the ring
of radius r, width dr, and charge dQ = ρs dS [Eq.(1.59)] equals

dV =
dQ

4πε0R
=
ρsr dr

2ε0R
, R =

√

r2 + z2 , (P1.76)

where dS = 2πr dr is the surface area of the ring [Eq.(1.60)]. A similar integration
as in Eqs.(1.61)-(1.63) then gives

V =

∫

S

dV =
ρs

2ε0

∫ a

r=0

r dr

R
=

ρs

2ε0

∫ a

r=0

dR =
ρs

2ε0
R|ar=0 =

ρs

2ε0

(√

a2 + z2 − |z|
)

(−∞ < z <∞) . (P1.77)

PROBLEM 1.35 Potential due to a hemispherical surface charge. We use
the same subdivision of the hemispherical surface into thin rings as in Fig.1.16 and
integrate the contributions to the potential by individual charged rings, as has been
done for the electric field in Example 1.12. Substituting the expression for the charge
of the ring shown in Fig.1.16, dQ = ρs2πa

2 sin θ dθ [Eq.(1.65)], and R = a in the
expression for the potential due to the ring (previous problem), dV = dQ/(4πε0R),
and integrating the such obtained expression as in Eq.(1.67), the resultant potential
at the point O in Fig.1.16 turns out to be

V =

∫ π/2

θ=0

dV =
ρsa

2ε0

∫ π/2

0

sin θ dθ =
ρsa

2ε0
. (P1.78)

PROBLEM 1.36 Potential due to a nonuniform spherical surface
charge. With respect to the potential computation in the previous problem, we
now have a nonuniform charge density and different integration upper limit (full
sphere), so that

V =

∫ π

θ=0

dV =
a

2ε0

∫ π

0

ρs(θ) sin θ dθ =
ρs0a

2ε0

∫ π

0

sin 2θ sin θ dθ = 0 . (P1.79)

The potential at the center of the sphere is zero essentially because its total charge
(Q) is zero.

Section 1.8 Voltage

PROBLEM 1.37 Voltage due to two point charges. Denoting one of the two
vertices with no charge at them by A and the center of the square by B (Fig.P1.16)
and combining Eqs.(1.88) and (1.80), the voltage between A and B comes out to be

VAB = VA − VB =

(
Q1

4πε0a
+

Q2

4πε0a

)

−
(

Q1

4πε0
√

2a/2
+

Q2

4πε0
√

2a/2

)
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=
(1−

√
2)(Q1 +Q2)

4πε0a
= −99.27 kV . (P1.80)

Q1

Q2a

a

A

2a /2

2a /2

B

Figure P1.16 Finding the voltage between points A and B due to two point
charges, Q1 and Q2, at nonadjacent vertices of a square.

Section 1.9 Differential Relationship Between the
Field and Potential in Electrostatics

PROBLEM 1.38 Sketch field from potential. As in Eq.(1.99), the electric
field intensity in the region is given by Ex(x) = − dV/dx, i.e., it equals the negative
of the derivative of the function V (x) at the coordinate x. In other words, Ex(x)
equals the negative of the slope of the V (x) curve in Fig.1.54 at the corresponding
abscissa point x, and based on this fact we sketch the function Ex(x) – in Fig.P1.17.

0

1

1

1098

76543

2

-1

2

-2

Ex [V/cm]

x [cm]

Figure P1.17 Plot of the electric field intensity Ex(x) in the region with the 1-D
potential distribution V (x) given in Fig.1.54.

Section 1.10 Gradient

PROBLEM 1.39 Field from potential, point charge. We first represent the
expression for the electric potential due to a point charge in free space, given by
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Eq.(1.80), in the spherical coordinate system in which Q is at the coordinate origin,
so simply replace R by r in Eq.(1.80). Then, we apply the formula for the gradient
in spherical coordinates, Eq.(1.108), in conjunction with Eq.(1.101) to obtain the
corresponding electric field vector, as follows (because V is a function of r only, the
gradient formula retains only the first term):

E = −∇V = − dV

dr
r̂ = − Q

4πε0

d

dr

(
1

r

)

r̂ =
Q

4πε0r2
r̂ . (P1.81)

This, of course, is the same result as in Eq.(1.24) with R = r and R̂ = r̂.

PROBLEM 1.40 Field from potential, charged semicircle. (a) A combi-
nation of Eqs.(1.101) and (1.102) and the expression for the electric potential from
Problem 1.33, V = Q′a/(4ε0

√
z2 + a2), gives the following for the z-component of

the electric field vector along the z-axis in Fig.1.12(a):

E = −∇V = − dV

dz
ẑ = −Q

′a

4ε0

d

dz

(
1√

z2 + a2

)

ẑ =
Q′az

4ε0 (z2 + a2)
3/2

ẑ , (P1.82)

which is the same result as in Eq.(1.50).

(b) Having in mind Eqs.(1.101) and (1.102), the x-component of the vector E due to
the charged semicircle equals Ex = − dV/dx, and to compute this derivative at the
point P in Fig.1.12(a), we need not only the value of the potential V at this point
(or at points along the z-axis) but also at points off of the axis, in the x direction,
which, however, is not provided by the expression for V from Problem 1.33.

PROBLEM 1.41 Field from potential, charged disk. In the same way as
in Eq.(1.112), we combine Eqs.(1.101) and (1.105) and the expression for V given
in Problem 1.34, V = ρs(

√
a2 + z2 − |z|)/(2ε0), to obtain

E = −∇V = − dV

dz
ẑ = − ρs

2ε0

d

dz

(√

a2 + z2 − |z|
)

ẑ =
ρs

2ε0

(
z

|z| −
z√

a2 + z2

)

ẑ ,

(P1.83)
namely, the same result as in Eq.(1.63), where the use is made of the fact that the
derivative (slope) of the function |z| equals 1 for z > 0, is −1 for z < 0, and is not
defined for z = 0, which, exactly, is represented by the function z/|z|.

PROBLEM 1.42 Field from potential, charged hemisphere. It is impos-
sible to find E = −gradV at the hemisphere center (point O) in Fig.1.16 from the
expression for the potential obtained in Problem 1.35 because this expression gives
V only at that very point, which is not enough; to compute E = Ez ẑ = −( dV/dz) ẑ
at the point O, we need the function V (z) along the z-axis, at least in a small neigh-
borhood of the point.
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PROBLEM 1.43 Angle between field lines and equipotential surfaces.
Since the potential does not change (V = const) over an equipotential surface, by
its definition, the gradient of the potential, ∇V , and thus the electric field vector
(in electrostatics), E = −∇V [Eq.(1.101)], does not have a component tangential
to this surface (see Fig.1.27), i.e., E is perpendicular to it.

PROBLEM 1.44 Direction of the steepest ascent. (a) As the gradient of a
scalar function at a location in space points in the direction in which the function
increases the most at that location [Eq.(1.110) and Fig.1.27 for β = 0], the direction
of the steepest ascent (maximum increase of the terrain elevation, h) at the location
(x, y) is given by gradh, which results in [we first transform the expression for
h(x, y) such that x and y are entered in meters]

h(x, y) = 0.1x ln(0.001y) m (x, y in m) −→ ∇h(x, y) =
∂h

∂x
x̂ +

∂h

∂y
ŷ

= 0.1 ln(0.001y) x̂ + 0.1
x

y
ŷ (x, y in m) . (P1.84)

At the specified location, (3000 m, 3000 m), the unit vector l̂ (|̂l| = 1) defining this
direction (of the steepest ascent) turns out to be

x = y = 3000 m −→ ∇h = 0.1 (ln 3 x̂ + ŷ) −→ l̂ =
∇h
|∇h|

=
ln 3 x̂ + ŷ
√

(ln 3)2 + 1
= 0.7395 x̂ + 0.6731 ŷ . (P1.85)

(b) From Eq.(1.111), the maximum space rate of increase in the function h per unit
distance is equal to the magnitude of the vector ∇h at that location [(dh/dl)max =
|∇h|]. Hence, using Eqs.(P1.85), the ascent at the point (3000 m, 3000 m), expressed
as an angle α (in degrees), amounts to

∆h

∆l

∣
∣
∣
∣
max

=
dh

dl

∣
∣
∣
∣
max

= |∇h| = 0.1
√

(ln 3)2 + 1 = 0.1485

−→ α = arctan
∆h

∆l
= arctan 0.1485 = 8.45◦ (P1.86)

(arctan ≡ tan−1).

PROBLEM 1.45 Maximum increase in electrostatic potential. Using
Eq.(1.110) and Fig.1.27 for β = 0, in conjunction with Eq.(1.101), the direction
of the maximum increase in the electric potential at a point (x, y, z) is determined
by gradV , as follows:

Direction of
dV

dl

∣
∣
∣
∣
max

−→ ∇V (x, y, z) = −E(x, y, z)

= (−4 x̂ + z2 ŷ − 2yz ẑ) V/m (x, y, z in m) . (P1.87)
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At the given point, (1 m, 1 m,−1 m), the unit vector l̂ defining this direction is [see
Eq.(1.5)]

x = y = −z = 1 m −→ ∇V = (−4 x̂ + ŷ + 2 ẑ) V/m −→ l̂ =
∇V
|∇V | =

=
−4 x̂ + ŷ + 2 ẑ
√

(−4)2 + 12 + 22
= −0.8729 x̂ + 0.2182 ŷ + 0.4364 ẑ . (P1.88)

Section 1.11 3-D and 2-D Electric Dipoles

PROBLEM 1.46 Large and small electric dipole. (a) For the observation
(potential/field) point midway between the two charges, application of Eqs.(1.80)
and (1.24) and the superposition principle gives the following for the resultant elec-
tric potential and field vector due to the charges:

V =
Q

4πε0R1
+
−Q

4πε0R2
= 0 , E = 2

Q

4πε0R2
1

(− ẑ) = − Q

2πε0R2
1

ẑ

= −17.98 ẑ V/m (Q1 = −Q2 = Q = 1 nC , R1 = R2 = 1 m) . (P1.89)

(b) Next, the observation point and the two charges form a right-angled triangle,
and hence [see a similar field computation in Eqs.(1.220) an Fig.1.48(b)]

V =
1

4πε0R1
(Q−Q) = 0 , E = 2

Q

4πε0R2
1

cosα (− ẑ) = −
√

2Q

4πε0R2
1

ẑ

= −6.355 ẑ V/m
(

R1 = R2 =
√

2 m = 1.414 m , α = 45◦
)

. (P1.90)

(c) Finally, the distance of the observation point from the coordinate origin now
being r =

√
1002 + 1002 + 1002 m = 100

√
3 m ≫ d = 2 m, the two point charges

can be considered as a small electric dipole in Fig.1.28, of length d = 2 m. Therefore,
we use Eqs.(1.115) and (1.117) for this dipole, and obtain

V =
Qd cos θ

4πε0r2
= 346 µV , E =

Qd

4πε0r3

(

2 cos θ r̂ + sin θ θ̂

)

= (4 r̂ + 2.82 θ̂) µV/m

(

d = 2 m , r = 100
√

3 m = 173.2 m , θ = arccos
1√
3

= 54.74◦
)

(P1.91)

(arccos ≡ cos−1). Note, on the other hand, that the two-charge system in cases (a)
and (b) is a large electric dipoles (the source-to-field distances are of a comparable
size as the dipole), so that the dipole potential and field expressions derived in
Section 1.11 (under the condition r ≫ d) cannot be invoked.
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PROBLEM 1.47 Potential and field due to a small electric dipole. (a)-
(f) As r ≫ d in all cases, (a)-(f), the dipole potential and field are computed at the
respective points (r, θ, φ) using Eqs.(1.115) and (1.117) as follows:

Va =
p cos θ

4πε0r2
= 9 mV , Ea =

p

4πε0r3

(

2 cos θ r̂ + sin θ θ̂

)

= 18 r̂ mV/m (r = 1 m ,

θ = φ = 0) ; Vb = 0 , Eb = 9 θ̂ mV/m (r = 1 m , θ = φ = π/2) ;

Vc = −9 mV , Ec = −18 r̂ mV/m ; Vd = 6.35 mV ,

Ed = (12.7 r̂ + 6.35 θ̂) mV/m ; Ve = 63.5 µV , Ee = (12.7 r̂ + 6.35 θ̂) µV/m ;

Vf = 0.635 µV , Ef = (12.7 r̂ + 6.35 θ̂) nV/m . (P1.92)

PROBLEM 1.48 Dipole equivalent to a nonuniform line charge. As
shown in Problem 1.16, the total charge of the semicircle is zero, as is the case
for an electric dipole, in Fig.1.28 [Qtot = Q + (−Q) = 0 for the dipole]. Since the
charge density function of the semicircle, Q′(φ) = Q′

0 sinφ, assuming that Q′
0 > 0,

is positive for 0 < φ ≤ π/2 and negative for −π/2 ≤ φ < 0, we expect that the
positive point charge (Q) of the equivalent electric dipole replacing this nonuniform
line charge should be on the positive part of the y-axis in Fig.1.12(a), while the
negative point charge (−Q) is on the negative part of the axis.

r = z

x

y

z

O

P
E

q = 90

qqq

p

Figure P1.18 Electric dipole of moment p equivalent to the nonuniform line charge
distribution along the semicircle [Fig.1.12(a)] from Problem 1.16 (equivalency at the
field point P, where |z| ≫ a).

If |z| ≫ a along the z-axis in Fig.1.12(a),
√
z2 + a2 ≈ |z|, with which the electric

field vector due to the charged semicircle (Problem 1.16) becomes

E = − Q′
0a

2

8ε0 (z2 + a2)3/2
ŷ ≈ − Q′

0a
2

8ε0|z|3
ŷ (|z| ≫ a) . (P1.93)

For the spherical coordinate system whose z-axis is along the y-axis in Fig.1.12(a),
E has only a θ-component, as depicted in Fig.P1.18. Comparing this field vector
expression to that of an electric dipole in Eq.(1.117), we identify the moment (p)
of the equivalent dipole to be

E =
Q′

0a
2

8ε0|z|3
(− ŷ) =

Q′
0a

2

8ε0r3
sin 90◦ θ̂ =

p

4πε0r3
θ̂ −→ p =

πQ′
0a

2

2
ŷ .

(P1.94)
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PROBLEM 1.49 Expression for the electric field due to a line dipole.
Similarly to the derivation in Eq.(1.117), we now use the formula for the gradi-
ent in cylindrical coordinates, Eq.(1.105), and apply it to the expression for V in
Eq.(1.121), which gives the associated expression for E of a line dipole (Fig.1.29):

E = −∇V = −∂V
∂r

r̂− 1

r

∂V

∂φ
φ̂ =

p′

2πε0r2

(

cosφ r̂ + sinφ φ̂

)

. (P1.95)

PROBLEM 1.50 Near and far potential and field due to a line dipole.
This is a 2-D variation of the computation in Problem 1.46, and we refer to Fig.1.29,
showing a cross section of a line dipole.

(a) As the distance of the observation point from the dipole axis, r = 2 m, is equal
to the displacement between the dipole charges, d = 2 m, we cannot employ here
line dipole potential and field expressions derived for the case r ≫ d. Instead, we
resort to Eqs.(1.119) and (1.57), and obtain

V =
Q′

2πε0
ln
r2
r1

=
Q′

2πε0
ln 3 = 1.975 V , E =

Q′

2πε0

(
1

r1
− 1

r2

)

x̂ = 1.198 x̂ V/m

(Q′
1 = −Q′

2 = Q′ = 100 pC/m , r1 = 1 m , r2 = 3 m) . (P1.96)

(b) As r = 100
√

2 m ≫ d = 2 m, we now do invoke Eq.(1.121) and the associated

expression for E (from the previous problem), E = Q′d(cosφ r̂+sinφ φ̂)/(2πε0r
2),

which yield

V =
Q′d cosφ

2πε0r
= 17.98 mV , E =

Q′d

2πε0r2

(

cosφ r̂ + sinφ φ̂

)

= 127.1( r̂ + φ̂) µV/m
(

d = 2 m , r = 100
√

2 m = 141.4 m , φ = 45◦
)

.

(P1.97)

Section 1.12 Formulation and Proof of Gauss’ Law

PROBLEM 1.51 Flux of the electric field vector through a cube side.
From Gauss’ law, Eq.(1.133), the total outward flux of the electric field intensity
vector due to the point charge Q through the (closed) surface S (all six sides) of the
cube (Fig.P1.19) equals Q/ε0 (the enclosed charge in S is QS = Q). Since the field
lines due to charge Q are radial “beams” starting at the charge, Fig.1.22, and it is
placed at the cube center, the outward fluxes of E through all sides of the cube are
equal, and hence

(ΨE)through one side =
1

6
(ΨE)through all six sides =

1

6

∮

S

E · dS =
1

6

QS
ε0

=
Q

6ε0
.

(P1.98)

© 2011 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This publication is protected by Copyright and written permission should be 
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, 
mechanical, photocopying, recording, or likewise. For information  regarding permission(s), write to: Rights and Permissions Department, 
Pearson Education, Inc., Upper Saddle River, NJ 07458.
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Q

a

n

S

Figure P1.19 Point charge Q at the center of a cube in free space: evaluation of
the outward flux of the electric field intensity vector through the top (or any other)
side of the cube.

PROBLEM 1.52 Flux for a different placement of the point charge. Let
us assume that the point charge Q is placed at the bottom side of the cube, which is
horizontal, as shown in Fig.P1.20, and let us consider a plane containing that side,
which divides the space into upper and lower half-spaces. It is then obvious that
exactly a half of the electric-field lines emanating from the charge belong to the
upper half-space, as well as that these lines pass through the remaining five sides of
the cube, and thus constitute the total outward flux of the vector E through them,
which gives

(ΨE)through five sides = (ΨE)in upper half−space =
1

2
(ΨE)in entire space =

Q

2ε0
.

(P1.99)

Q

a

n

Figure P1.20 Point charge Q at the center of a side of the cube: evaluation of the
total outward flux of E through the remaining five sides.

Section 1.13 Applications of Gauss’ Law

PROBLEM 1.53 Field of a point charge from Gauss’ law. This is a prob-
lem (the simplest one) with spherical symmetry. The vector E is of the form in
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Eq.(1.136), the Gaussian surface S is a spherical surface in Fig.1.33, with the point
charge Q at its center (point O), the outward flux of E through S is given in
Eq.(1.138), the charge enclosed by S is simply QS = Q, and Gauss’ law, Eq.(1.133),
gives

ΨE = E(r) 4πr2 and ΨE =
QS
ε0

=
Q

ε0
−→ E = E(r) r̂ =

Q

4πε0r2
r̂ .

(P1.100)

PROBLEM 1.54 Uniformly charged thin spherical shell. (a) Because of
spherical symmetry, the electric field vector everywhere (inside and outside the
charged thin spherical shell) is given by E = E(r) r̂ [Eq.(1.136)]. Applying Gauss’
law to a spherical surface of radius r (0 ≤ r < ∞) placed concentrically with the
shell, we obtain the following equations for the two characteristic sizes of the surface:

E(r) 4πr2 = 0 (0 ≤ r < a) , E(r) 4πr2 =
Q

ε0
(a < r <∞) (P1.101)

(in the first case, there is no charge enclosed by the surface), and hence

E = 0 (inside a spherical shell) and E =
Q

4πε0r2
r̂ (outside) . (P1.102)

(b) As the field outside the shell is identical to that of a point charge Q, the same
is true for the electric potential for r > a, including V (a) at the very surface of the
shell (for r = a). Hence, Eq.(1.80) directly results in the potential of the shell [also
see Eq.(1.141)]:

V (a) =
Q

4πε0a
. (P1.103)

(c) Because the field is zero inside the shell, Eqs.(P1.102), the potential at the shell
center (for r = 0) equals V (a). Namely, by means of Eq.(1.90) or (1.142),

V (0) =

∫ a

r=0

E(r) dr + V (a) = V (a) =
Q

4πε0a
. (P1.104)

PROBLEM 1.55 Sphere with a nonuniform volume charge. To find the
distribution of the electric scalar potential inside and outside the nonuniformly
charged sphere, we first compute the distribution of the electric field intensity vector
everywhere – using Gauss’ law. This problem is similar to both Examples 1.18
(sphere with a uniform charge) and 1.19 (cylinder with a nonuniform charge). Much
like in Eq.(1.144), E inside the charge distribution is found applying Eq.(1.135) to
a spherical Gaussian surface S of radius r ≤ a, shown in Fig.P1.21, as follows:

E1(r) 4πr2
︸︷︷︸

S

=
1

ε0

∫ r

r′=0

ρ0
r′

a
︸︷︷︸

ρ

4πr′2 dr′
︸ ︷︷ ︸

dv

−→ E1(r) =
ρ0r

2

4ε0a
, for r ≤ a ,

(P1.105)
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30 Branislav M. Notaroš: Electromagnetics (Pearson Prentice Hall)

where dv is the volume of a thin spherical shell of radius r′ (0 < r′ ≤ r) and
thickness dr′, given in Eq.(1.33). If the field point is outside the charged sphere
(r > a), the upper limit in the integral in r′ becomes a, resulting in

E2(r) =
ρ0a

3

4ε0r2
, for r > a . (P1.106)

Invoking Eq.(1.74), the potential at a distance r of the sphere center (with
respect to the reference point at infinity) is given by

V2(r) =

∫ ∞

r′=r

E2(r
′) dr′ =

ρ0a
3

4ε0r
, for r ≥ a , (P1.107)

and, similarly to the computation in Eq.(1.142),

V1(r) =

∫ a

r′=r

E1(r
′) dr′ + V2(a) =

ρ0a
2

3ε0

(

1− r3

4a3

)

, for r < a . (P1.108)

r

O

r(  )

S

d

a

nn

E1r' r'

r'

V1

Figure P1.21 Evaluation of the electric field and potential due to a sphere with a
nonuniform volume charge [ρ given in Eq.(1.32)].

PROBLEM 1.56 Field of an infinite line charge from Gauss’ law. This
being a problem (the simplest one) with cylindrical symmetry, the electric field is
radial (with respect to the line charge), and Gauss’ law [Eq.(1.133)] applied to the
cylindrical surface of radius r (a < r < ∞) and height h, coaxial with the charge
[see the left-hand side of Eq.(1.144)], yields

E(r) 2πrh
︸ ︷︷ ︸

Sc

=
1

ε0
Q′h
︸︷︷︸

QS

−→ E = E(r) r̂ =
Q′

2πε0r
r̂ , (P1.109)

where r̂ is the radial cylindrical unit vector.

PROBLEM 1.57 Uniformly charged thin cylindrical shell. This is the
cylindrical version of Problem 1.54 (charged thin spherical shell). The electric field
is radial with respect to the axis of the charged cylindrical shell, and we apply Gauss’
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law [Eq.(1.133)] to the cylindrical surface of radius r (0 ≤ r < ∞) and height h,
coaxial with the shell. For the field point inside the shell,

E(r) 2πrh = 0 −→ E = 0 (0 ≤ r < a) (P1.110)

(there is no charge enclosed by the Gaussian surface). The total charge of the part
of the shell of height (length) h being QS = ρs2πah (surface charge density times
the lateral surface area of this part of the cylinder of radius a), the field vector
outside the shell turns out to be

E(r) 2πrh =
ρs2πah

ε0
−→ E = E(r) r̂ =

ρsa

ε0r
r̂ (a < r <∞) . (P1.111)

PROBLEM 1.58 Cylinder with uniform volume charge. Having in mind
Eq.(1.144), the electric field intensity inside the uniformly charged infinite cylinder
is given by

E(r) 2πrh =
1

ε0
ρ πr2h
︸ ︷︷ ︸

v

−→ E(r) =
ρr

2ε0
(0 ≤ r ≤ a) (P1.112)

(since ρ = const, the charge enclosed by the Gaussian surface equals ρ times the
volume v of the enclosed cylindrical domain). Employing then Eq.(1.90), the voltage
between the surface and the axis of the cylinder, computed as the negative of the
voltage between the axis and the surface, amounts to

V = −
∫ a

r=0

E(r) dr = −ρa
2

4ε0
. (P1.113)

E
S0

rs

E

Figure P1.22 Application of Gauss’ law to compute the electric field of an infinite
sheet of charge.

PROBLEM 1.59 Field of an infinite sheet of charge from Gauss’ law.
This is a problem (the simplest one) with planar symmetry, so the electric field
intensity vector everywhere is of the form in Eq.(1.148). We apply Gauss’ law,
Eq.(1.133), to a rectangular box shown in Fig.P1.22 (see also Fig.1.15), in a similar
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fashion as in Fig.1.35, and obtain [see the left-hand side of Eq.(1.149)]

2ES0 =
1

ε0
ρsS0
︸︷︷︸

QS

−→ E =
ρs

2ε0
. (P1.114)

PROBLEM 1.60 Two parallel oppositely charged sheets. (a) This is the
simplest case of planar symmetry with an antisymmetrical charge distribution, like
the one analyzed in Example 1.21. The total charge of the two sheets is zero, and the
electric field outside the region between the sheets is zero as well. For the Gaussian
rectangular surface portrayed in Fig.P1.23, what we obtain is the left-hand side of
Gauss’ law in Eq.(1.155) and the right-hand side as in the previous problem, so the
electric field intensity E between the sheets turns out to be

ES0 =
1

ε0
ρsS0 −→ E =

ρs

ε0
. (P1.115)

ES0
rs

E1

1 22

E = 0

E2

E = 0

E1

E2

E1

E2

d

−rs

Figure P1.23 Evaluation of the electric field due to two parallel infinite sheets of
opposite charges.

Alternatively, we can obtain the same result by the superposition of fields E =
ρs/(2ε0) [Eq.(1.64)] due to the positively and negatively charged infinite sheets
considered independently, which is also illustrated in Fig.P1.23, where

E = E1 + E2 = 2E1 = 2
ρs

2ε0
=
ρs

ε0
(between sheets) ,

E = E1 − E2 = 0 (outside) . (P1.116)

(b) The voltage between the sheets equals

V = Ed =
ρsd

ε0
, (P1.117)
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with d being the distance between the sheets in Fig.P1.23.

PROBLEM 1.61 Equivalent sheet of charge. (a) As this is a problem with
planar symmetry and symmetrical charge distribution, we refer to Fig.1.35 and
Eq.(1.149), and write, for the field point inside the charge layer,

2Ex(x)S0 =
1

ε0
ρ S02x
︸ ︷︷ ︸

v

−→ Ex(x) =
ρx

ε0

(

−d
2
≤ x ≤ d

2

)

, (P1.118)

where v is the volume of the Gaussian rectangular box in Fig.1.35 and QS = ρv
since ρ = const.

(b) For the field point outside the layer, as in Eqs.(1.151) and (1.152),

Ex(x) = Ex(d/2) =
ρd

2ε0

(

x >
d

2

)

, Ex(x) = Ex(−d/2) = − ρd

2ε0

(

x < −d
2

)

.

(P1.119)
Comparing this result to that in Eq.(1.64), we realize that the surface charge density
of the equivalent infinite sheet of charge (Fig.1.15) that can replace the layer, as far
as the field outside it is concerned, amounts to ρs = ρd.

PROBLEM 1.62 Layer with a cosine volume charge distribution. (a)
The charge density ρ(x) is an even function of the coordinate x (symmetrical charge
distribution), and Eq.(1.149) becomes

2Ex(x)S0 =
1

ε0

∫ x

x′=−x
ρ0 cos

(π

a
x′
)

S0 dx′ −→ Ex(x) =
ρ0a

πε0
sin
(π

a
x
)

(|x| ≤ a) . (P1.120)

Eqs.(1.151) and (1.152) then give

Ex(x) = Ex(a) = Ex(−a) = 0 (|x| > a) . (P1.121)

(b) Since Ex(x) is an odd function of x, the voltage across the charge layer (between
planes x = −a and x = a) comes out to be zero,

V =

∫ a

x=−a
Ex(x) dx =

∫ a

−a
sin
(π

a
x
)

dx = 0 . (P1.122)

PROBLEM 1.63 Layer with a sine charge distribution. (a) The function
ρ(x) is now odd (antisymmetrical charge distribution), the electric field outside the
charge layer is zero, Eq.(1.154), and that inside the layer is given by Eq.(1.155),
which results in

Ex(x) =
1

ε0

∫ x

x′=−a
ρ0 sin

(π

a
x′
)

dx′ = −ρ0a

πε0

[

1 + cos
(π

a
x
)]

(|x| ≤ a) .
(P1.123)
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(b) The voltage between planes x = −a and x = a amounts to

V =

∫ a

x=−a
Ex(x) dx = −2ρ0a

2

πε0
. (P1.124)

PROBLEM 1.64 Exponential charge distribution in the entire space.
This is the same type of problem (planar with antisymmetrical charge distribution)
as the previous one. However, the principal differences important for the solution
procedure in the present case are the infinite extent of the charge distribution (it now
starts and ends at infinity, along the x-axis), as well as its discontinuity at x′ = 0.
Hence, we position the left face of the Gaussian surface (in Fig.1.35) and start the
volume integration in the plane x′ → −∞ (where the charge distribution begins).
In addition, because of the discontinuity in the function ρ(x′), we must separately
analyze the cases when the field point is in the left half-space (−∞ < x ≤ 0) and
in the right-hand one (0 < x < ∞). Finally, in the latter case, we must break
the integration at the discontinuity point (plane), x′ = 0. Having all these facts in
mind, the algebraic intensity of the field vector E at a location defined by a negative
(or zero) coordinate x is given by

Ex(x) =
1

ε0

∫ x

x′=−∞
ρ0 ex

′/a dx′ =
ρ0a

ε0
ex/a (x ≤ 0) , (P1.125)

whereas for the positive x,

Ex(x) =
1

ε0

[∫ 0

−∞
ρ0 ex

′/a dx′ +

∫ x

0

(−ρ0) e−x
′/a dx′

]

=
ρ0a

ε0
e−x/a (x > 0) .

(P1.126)
Both results can be unified into a single field expression for the entire space:

E =
ρ0a

ε0
e−|x|/a x̂ (−∞ < x <∞) . (P1.127)

Section 1.14 Differential Form of Gauss’ Law

PROBLEM 1.65 Uniform electric field. Since the electric field in the region
is uniform (E0 = const), all spatial derivatives of E0 are zero, and Gauss’ law in
differential form, Eq.(1.163), tells us that there is no excess volume charge in the
region, namely, ρ = 0.

PROBLEM 1.66 Charge distribution from 1-D field distribution. As the
field vector E in this electrostatic system has an x-component only, and Ex depends
on the coordinate x only (one-dimensional field distribution), we use the 1-D Gauss’

© 2011 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This publication is protected by Copyright and written permission should be 
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, 
mechanical, photocopying, recording, or likewise. For information  regarding permission(s), write to: Rights and Permissions Department, 
Pearson Education, Inc., Upper Saddle River, NJ 07458.



P1. Solutions to Problems: Electrostatic Field in Free Space 35

law in differential form, Eq.(1.158). Combined with Eq.(1.99), it gives the following
charge density in the system:

ρ = ε0
dEx
dx

= −2ε0V2

d2
. (P1.128)

Section 1.15 Divergence

PROBLEM 1.67 Charge from field, planar symmetry. We apply the one-
dimensional differential Gauss’ law – in Eq.(1.158). From Eq.(1.150),

ρ = ε0
dEx
dx

= ρ0

(

1− x2

a2

)

, for |x| ≤ a , (P1.129)

which, of course, is the charge density in Eq.(1.147). From Eqs.(1.151) and (1.152),
on the other side,

ρ = ε0
dEx
dx

= 0 , for |x| > a . (P1.130)

PROBLEM 1.68 Charge from field, cylindrical symmetry. A combination
of the differential Gauss’ law in Eq.(1.166) and the formula for the divergence in
cylindrical coordinates, Eq.(1.170), applied to the field expressions in Eqs.(1.145)
and (1.146), gives (because E has a radial cylindrical component only, E = Er, the
divergence formula retains only the first term):

ρ = ε0∇ ·E =
ε0
r

∂

∂r
(rEr) =

1

r

∂

∂r

(
ρ0r

4

4a2

)

=
ρ0r

2

a2
, for r ≤ a ,

ρ =
ε0
r

∂

∂r
(rEr) =

1

r

∂

∂r

(
ρ0a

2

4

)

= 0 , for r > a , (P1.131)

that is, the charge distribution in Eq.(1.143).

PROBLEM 1.69 Charge from field, spherical symmetry. This is a version
of the previous problem but in spherical coordinates. Eqs.(1.166), (1.171), and
(1.140) lead to

ρ = ε0∇ ·E =
ε0
r2

∂

∂r

(
r2Er

)
=

1

r2
∂

∂r

(
ρr3

3

)

= ρ = const , for r ≤ a ,

ρ =
ε0
r

∂

∂r2
(
r2Er

)
=

1

r2
∂

∂r

(
ρa3

3

)

= 0 , for r > a , (P1.132)

which indeed represents a uniformly charged sphere of radius a and charge density
ρ in free space.
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PROBLEM 1.70 Nonuniformly charged sphere using differential Gauss’
law. This is a version of Example 1.22 but with a nonuniform charge distribution
in a sphere, so a function ρ(r), Eq.(1.32), in place of a constant ρ. For the field
point inside the charge distribution, Eq.(1.174) now takes form

∇ · E =
1

r2
∂

∂r

[
r2E(r)

]
=
ρ(r)

ε0
=
ρ0r

ε0a
(0 ≤ r ≤ a) . (P1.133)

We solve this differential equation in r by integration, as in Eqs.(1.175),

r2E(r) =
ρ0

ε0a

∫

r3 dr =
ρ0r

4

4ε0a
+C1 −→ E(r) =

ρ0r
2

4ε0a
+
C1

r2
=
ρ0r

2

4ε0a
, (P1.134)

with the integration constant C1 being zero – from the “initial” condition E(0) = 0.
For the field point outside the charged sphere, where ρ(r) = 0, the differential

equation and its solution are exactly those in Eqs.(1.176), whereas the integration
constant C2 is determined from the “boundary” condition at the sphere boundary,
as follows:

E(r) =
C2

r2
and E(a−) = E(a+) = E(a) −→ C2 =

ρ0a
3

4ε0

−→ E(r) =
ρ0a

3

4ε0r2
(a < r <∞) . (P1.135)

We note that the results in Eqs.(P1.134) and (P1.135) are, of course, the same
as those obtained using Gauss’ law in integral form in Problem 1.55.

PROBLEM 1.71 Problem with cylindrical symmetry by differential
Gauss’ law. We now use the formula for the divergence in cylindrical coordi-
nates, Eq.(1.170), which incorporated in Gauss’ law in differential form, Eq.(1.166),
gives the following differential equation in the radial cylindrical coordinate r for the
field point inside the charge distribution in Fig.1.34:

∇ · E =
1

r

∂

∂r
[rE(r)] =

ρ(r)

ε0
=
ρ0r

2

ε0a2
(0 ≤ r < a) . (P1.136)

By its integration, we obtain

rE(r) =
ρ0

ε0a2

∫

r3 dr =
ρ0r

4

4ε0a2
+ C1 −→ E(r) =

ρ0r
3

4ε0a2
+
C1

r
, (P1.137)

where C1 = 0, because E(0) = 0 [note that if there were a line charge of density
Q′

0 along the axis of the cylinder in Fig.1.34, this constant would amount to C1 =
Q′

0/(2πε0), from Eq.(1.57)].
If the field point is outside the charged cylinder in Fig.1.34 (ρ = 0), the differ-

ential equation and its solution become

∂

∂r
[rE(r)] = 0 −→ rE(r) = C2 −→ E(r) =

C2

r
(a < r <∞) ,

(P1.138)
and the constant C2 amounts to

E(a−) = E(a+) = E(a) −→ C2 =
ρa2

4ε0
. (P1.139)
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The results for E(r) in both regions, with the computed values of C1 and C2

substituted in Eqs.(P1.137) and (P1.138), are in agreement with Eqs.(1.145) and
(1.146).

PROBLEM 1.72 Problem with planar symmetry using differential
Gauss’ law. This is a version of Example 1.23 but with a uniform charge dis-
tribution in a layer between x = −a = −d/2 and x = a = d/2 in Fig.1.35.

(a) For the field point inside the charge layer, Eq.(1.178) now becomes

dEx
dx

=
ρ

ε0
(ρ = const) −→ Ex(x) =

1

ε0

∫

ρ dx =
ρx

ε0
+ C1

(

|x| ≤ d

2

)

.

(P1.140)
Because of symmetry of the charge distribution with respect to the plane x = 0 in
Fig.1.35,

Ex(a) = −Ex(−a)
(

a =
d

2

)

−→ ρd

2ε0
+ C1 =

ρd

2ε0
− C1 −→ C1 = 0 ,

(P1.141)
with which the result in Eq.(P1.140) matches that obtained in Problem 1.61, part
(a).

(b) If the observation point falls outside the charge layer (|x| > d/2), ρ = 0, and we
have

dEx
dx

= 0 −→ Ex(x) = C2

(

|x| > d

2

)

. (P1.142)

From the the “boundary” condition at the layer boundary defined by x = a = d/2,

Ex(a
+) = Ex(a

−) = Ex(a) −→ C2 =
ρd

2ε0
−→ Ex(x) =

ρd

2ε0

(

x >
d

2

)

.

(P1.143)
On the other side of the layer, the vector E has this same magnitude but opposite
direction, resulting in Ex(x) = −ρd/(2ε0) (x < −d/2). These solutions also are the
same as in Problem 1.61, part (b).

PROBLEM 1.73 Antisymmetrical charge, differential Gauss’ law. As
shown in Eq.(1.154) and explained via a superposition of fields contributed by dif-
ferentially thin layers constituting the charge distribution, the electric field outside
a (thick) layer with an antisymmetrical charge distribution [ρ(x) an odd function
of x in Fig.1.35] must be zero. For the field point inside the layer with ρ(x) given
by Eq.(1.153),

dEx(x)

dx
=
ρ(x)

ε0
=
ρ0x

ε0a
−→ Ex(x) =

ρ0

ε0a

∫

xdx =
ρ0x

2

2ε0a
+ C (|x| ≤ a) .

(P1.144)
From the fact that the field outside is zero and the “boundary” condition at the
layer boundary defined by x = a (or x = −a),

Ex(a
+) = Ex(a

−) = Ex(a) = 0 −→ ρ0a

2ε0
+ C = 0 −→ C = −ρ0a

2ε0
,

(P1.145)
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which, substituted in Eq.(P1.144), gives the result for Ex(x) in Eq.(1.155).

PROBLEM 1.74 Gauss’ law in differential and integral form. (a) Using
the differential Gauss’ law in Eq.(1.163) or (1.166), the volume charge density in
the region is given by

ρ = ε0∇ · E = ε0

(
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

)

= 4ε0y (C/m3) (y in m) . (P1.146)

(b) Performing volume integration with dv in the form of a slice of the cube with
thickness dy, the total charge enclosed in the cube amounts to

QS =

∫

v

ρ(y) dv =

∫ 1 m

y=0

4ε0y 12 dy
︸ ︷︷ ︸

dv

= 2ε0 (C) . (P1.147)

(c) The outward flux of the vector E (its y-component) through the cube side defined
by y = 0 and that through the side y = 1 m cancel each other, and the same is true
for the fluxes through the pair of sides perpendicular to the z-axis. The flux through
the side x = 0 is zero because Ex = 0 on that side. Therefore, the net outward flux
of E through the entire (closed) surface of the cube reduces to the outward flux (in
the positive x direction) of Ex x̂ through the cube side at x = 1 m, which equals

ΨE =

∮

S

E ·dS =

∫

side x=1 m

Ex|x=1 m x̂ ·dS x̂ =

∫ 1 m

y=0

4y 1 dy
︸︷︷︸

dS

= 2 V·m , (P1.148)

where dS is adopted to be a strip of width dy on this side. We see that, indeed, the
computed ΨE [in Eq.(P1.148)] andQS [in Eq.(P1.147)] satisfy the relationship ΨE =
QS/ε0, which confirms the validity of both Gauss’ law in integral form, Eq.(1.135),
and the divergence theorem, Eq.(1.173), for this particular charge distribution and
closed surface.

Section 1.17 Evaluation of the Electric Field and
Potential Due to Charged Conductors

PROBLEM 1.75 Excentric charged sphere inside an uncharged shell. (a)
The charged metallic sphere in Fig.1.41 is now excentric relative to the uncharged
metallic spherical shell, but they are not touching. The total induced charge on the
outer surface of the shell, which is a result of the electrostatic induction, amounts
to Qc = −Qb = Qa = Q [from Eqs.(1.199) and (1.198)], as in the original structure
(with concentric sphere), and this charge is uniformly distributed over the surface
[as in Fig.1.41], because it is smooth and symmetrical (spherical). Therefore, the
electric-field lines outside the shell, for c < r < ∞, remain as in Fig.1.41 [E(r)
is given in Eq.(1.200)], and the same is true for the electric potential of the shell.
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Having in mind Eq.(1.202), this potential comes out to be

Vshell =

∫ ∞

r=c

E(r) dr =

∫ ∞

c

Qc
4πε0r2

dr =
Q

4πε0c
(Qc = Q) . (P1.149)

Note, however, that charges on the other two surfaces, i.e., on the surface of the
sphere and the inner surface of the shell, although retaining their total values,
Qa = Q and Qb = −Qa = −Q, respectively, as in the original structure, are not
distributed uniformly any more in the new electrostatic state, and the electric field
in the region between the sphere and the shell is not given by Eq.(1.200).

(b) If the sphere is pressed against the shell wall, the charge Q of the sphere flows
to the periphery of the shell, so that Qc = Q (however, Qa = Qb = 0 on the other
two surfaces). This charge is again uniformly distributed over the outer surface of
the shell, and the field outside the shell remains the same. The potential of the shell
is thus that in Eq.(P1.149).

PROBLEM 1.76 Point charge inside a charged shell. (a) Similarly to the
analysis in Example 1.27 [Eqs.(1.198) and (1.199)], the total induced charges on
the inner and outer surfaces of the shell are Qa = −2Q and Qb = Q − Qa =
3Q, respectively, and the charge distributions over the surfaces are illustrated in
Fig.P1.24.
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Figure P1.24 Surface-charge and field distributions in a system with a point
charge inside a charged spherical metallic shell.

(b) Inspecting the field lines or using Gauss’ law, as in Eq.(1.200), we obtain the
following expression for the electric field intensity outside the shell in Fig.P1.24:

E(r) =
Qb

4πε0r2
=

3Q

4πε0r2
(b < r <∞) , (P1.150)

and hence the potential of the shell

Vshell =

∫ ∞

r=b

E(r) dr =
3Q

4πε0

∫ ∞

b

dr

r2
=

3Q

4πε0b
. (P1.151)
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PROBLEM 1.77 Three concentric shells, one uncharged. (a) Denoting
the unknown charge of the middle spherical metallic shell by Qm and having in
mind that the charge of the outer shell is Qo = 0 (it is uncharged), the electric field
intensities in the three characteristic air-filled regions in the system are given by

E1(r) =
Q

4πε0r2
(a < r < b) , E2(r) =

Q+Qm

4πε0r2
(c < r < d) ,

E3(r) =
Q+Qm

4πε0r2
(e < r <∞) . (P1.152)

The given potential of the middle shell with respect to the reference point at infinity
can now be expressed as

V =

∫ d

r=c

E2(r) dr +

∫ ∞

e

E3(r) dr =
(Q+Qm)(cd− ce+ de)

4πε0cde
= 1 kV , (P1.153)

and solving this for Qm, we obtain Qm = −2.85 nC.

(b) The voltage between the inner and the outer shells is then

Vio =

∫ b

a

E1(r) dr+

∫ d

c

E2(r) dr =
1

4πε0

[
Q(b− a)

ab
+

(Q+Qm)(d − c)
cd

]

= 1.55 kV .

(P1.154)

PROBLEM 1.78 Three concentric shells, two at the same potential. (a)
We note a different notation (for the same structure) in this problem with respect
to the previous one. As the inner and outer shells are now at the same potential
(V1 = V3), the voltage between them is zero, so that (previous problem)

0 =
1

4πε0

[
Q1(b − a)

ab
+

(Q1 +Q2)(d− c)
cd

]

, (P1.155)

from which the charge of the middle shell is found to be Q2 = −6.8 nC.

(b) The potential of the inner shell with respect to the reference point at infinity
(V1) can be computed as that of the outer shell (V3), because they are the same, as
follows:

V1 = V3 =

∫ ∞

e

E3(r) dr =
Q1 +Q2 +Q3

4πε0e
= −611 V . (P1.156)

Finally, using V3, the potential of the middle shell amounts to

V2 =

∫ d

c

E2(r) dr + V3 =
(Q1 +Q2)(d− c)

4πε0cd
+ V3 = −851 V . (P1.157)

PROBLEM 1.79 Four coaxial cylindrical conductors. This is, essentially,
a cylindrical-geometry version of Example 1.28. By virtue of Gauss’ law [also see
Eq.(1.196)], the electric field intensities in the three characteristic air-filled regions
in the system, with the notation shown in Fig.P1.25, are given by

E1(r) =
Q′

1

2πε0r
(2d < r < 3d) , E2(r) =

Q′
1

2πε0r
(4d < r < 5d) ,
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Figure P1.25 Electric field vectors in the system of four cylindrical conductors in
Fig.1.55 (cross section of the system).

E3(r) =
Q′

1 +Q′
3

2πε0r
(6d < r < 7d) . (P1.158)

The known potential of the third conductor (cylindrical shell) with respect to
the ground (V3 = 1 kV) can be expressed in terms of the line integral of E from
that conductor, to the right, to the fourth conductor, which is grounded (V4 = 0),
as follows (Fig.P1.25):

V3 =

∫ 7d

r=6d

E3 dr =
Q′

1 +Q′
3

2πε0
ln

7d

6d
=
Q′

1 +Q′
3

2πε0
ln

7

6
. (P1.159)

On the other side, the same potential can be expressed as the line integral of E to
the left, to the first conductor, which is also grounded (V1 = 0),

V3 = −
(
∫ 3d

2d

E1 dr +

∫ 5d

4d

E2 dr

)

= − Q′
1

2πε0

(

ln
3d

2d
+ ln

5d

4d

)

= − Q′
1

2πε0
ln

15

8
,

(P1.160)
where the voltage between the third and the first conductor is computed as the
negative of the voltage between the first and the third one. From Eq.(P1.160),
Q′

1 = −2πε0V3/ ln(15/8) = −88.5 nC/m, which is then used with Eq.(P1.159) to
obtain Q′

3 = 2πε0V3/ ln(7/6)−Q′
1 = 450 nC/m.

PROBLEM 1.80 Three concentric conductors, one grounded. Having in
mind the field and potential expressions from Problem 1.77, we express the known
voltage between the inner and middle conductors in Fig.1.56 in terms of the unknown
charge of the inner conductor (Q1), and then solve for this charge:

V1−V2 =

∫ b

r=a

Q1

4πε0r2
dr =

Q1(b − a)
4πε0ab

−→ Q1 =
4πε0ab(V1 − V2)

b− a = 1.85 pC .

(P1.161)
Once Q1 is found, we express the given potential of the middle conductor with
respect to the ground (i.e., with respect to the outer conductor, which is grounded)
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in terms of both Q1 and the unknown charge of the middle conductor (Q2), to solve
for the latter one as well:

V2 =

∫ d

c

Q1 +Q2

4πε0r2
dr =

(Q1 +Q2)(d− c)
4πε0cd

−→ Q2 =
4πε0cdV2

d− c −Q1

= 24.85 pC . (P1.162)

PROBLEM 1.81 Charged metallic foil. The electric field due to a uniformly
charged infinitely large flat metallic foil is the same as the field due to an infinite
sheet of charge with the same surface charge density, ρs, in free space. The vector E
is thus that shown in Fig.1.15 and its magnitude is given by Eq.(1.64); in particular,
E = ρs/(2ε0) = 56.47 V/m.

PROBLEM 1.82 Two metallic slabs. (a) This structure, in the new electro-
static state, is shown in Fig.P1.26. As a result of the electrostatic induction, there
is induced surface charge on both surfaces of the newly added (uncharged) metallic
slab. The surface charge densities on the two surfaces of the first (charged) slab
being ρs1 = ρs2 = 1 µC/m2, the charge density on the first surface of the second
slab turns out to be ρs3 = −ρs2 = −1 µC/m2. This can be obtained visualizing
the electric-field lines that originate at the positive charges of density ρs2 on the
first slab and terminate at the negative charges of density ρs3 on the second slab.
Alternatively, we can apply Gauss’ law to a closed surface (rectangular box) with
two sides placed inside the metal of the two slabs, as illustrated in Fig.P1.26, so that
ΨE = 0 [because of Eq.(1.181)], which implies that QS = 0 as well, and ultimately
ρs2 + ρs3 = 0. Finally, since the second slab is uncharged, ρs3 + ρs4 = 0, and hence
ρs4 = −ρs3 = 1 µC/m2 on its farther surface.

rs1

1 22

E = 0

E1
E2 E3

rs2
rs3 rs4E = 0

d dD

Figure P1.26 Evaluation of the electric field in a system with a charged and an
uncharged infinitely large metallic slabs in free space.

(b) Applying Gauss’ law to rectangular closed surfaces whose one side is placed
inside a metallic slab (where the electric field is zero) and another side parallel to it
is in one of the field regions, as indicated in Fig.P1.26, the field intensities in these
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regions given with respect to the orientations of vectors E1, E2, and E3 shown in
Fig.P1.26 are E1 = ρs1/(2ε0) = 112.94 kV/m, E2 = ρs2/(2ε0) = 112.94 kV/m,
and E3 = ρs4/(2ε0) = 112.94 kV/m. These results can also be obtained by the
superposition of fields due four sheets of charge with densities ρs1, ρs2, ρs3, and ρs4

in Fig.P1.26 using Eq.(1.64) for each of the sheets.

(c) The voltage between the slabs amounts to V = E2D = 3.39 kV.

Section 1.19 Charge Distribution on Metallic Bodies
of Arbitrary Shapes

PROBLEM 1.83 Two metallic spheres at the same potential. Since d/a =
20 and d/b = 100, we conclude that the condition d ≫ a, b in Fig.1.45 is satisfied,
so we can use equations derived in Section 1.19.

(a) Based on Eq.(1.208), total charges of the two spheres in Fig.1.45 come out to be

Q = Qa +Qb and
Qa
Qb

=
a

b
−→ Qa =

a

a+ b
Q = 500 pC

and Qb =
b

a+ b
Q = 100 pC . (P1.163)

Hence, the potential of the spheres, Eqs.(1.206), amounts to

Va = Vb =
Qa

4πε0a
= 90 V . (P1.164)

(b) From Eq.(1.193), the respective electric field intensities near the surfaces of the
spheres (Fig.1.45) are given by

Ea =
ρsa

ε0
=

Qa
4πε0a2

= 1.8 kV/m and Eb =
ρsb

ε0
=

Qb
4πε0b2

= 9 kV/m .

(P1.165)
Note that Eb = 5Ea, which is in agreement with Eq.(1.210).

Section 1.20 Method of Moments for Numerical
Analysis of Charged Metallic Bodies

PROBLEM 1.84 MoM-based computer program for a charged plate.
Computer program for determining the charge distribution of the plate, using the
method of moments as presented in Section 1.21, is given in the associated MATLAB
exercise.

(a) Results for the surface charge density of N = 100 patches in the tabulated form
and as a 3-D plot are shown in Fig.P1.27.
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Figure P1.27 Surface charge density (ρs) of N = 100 (ten partitions in each
dimension) patches modeling a thin charged square plate in free space – results
obtained using the method of moments (MoM) as presented in Section 1.21 (MoM
computer program is given in the associated MATLAB exercise).

(b) The total charge of the plate [Eq.(1.219)], taking (i) N = 9, (ii) N = 25, (iii)
N = 49, and (iv) N = 100, amounts to (i) Q = 37.29 pC, (ii) Q = 38.71 pC, (iii)
Q = 39.33 pC, and (iv) Q = 39.8 pC, respectively.

PROBLEM 1.85 MoM computation for a charged cube. Computer pro-
gram for the method-of-moments analysis of the charged metallic cube (Fig.1.46) is
given in the associated MATLAB exercise. The calculated total charge of the cube
adopting N = 600 (ten subdivisions per cube edge) equals Q = 73.27 pC.

PROBLEM 1.86 Approximate integral expression for the electric field
vector. (a) We start with the surface integral expression in Eq.(1.38), for com-
puting, by integration, the electric field intensity vector at an arbitrary point of
space due to a surface charge distribution, with density ρs, over a surface S, which
in our case is the surface of a charged metallic body (as in Fig.1.46). We (exactly
or approximately) represent the surface S by N small patches ∆Si, i = 1, 2, . . . , N
(Fig.1.46), and approximate ρs on the ith patch by a (known or unknown) constant
ρsi, as in Eq.(1.212). We then approximate the field integral in Eq.(1.38) in the
same way the potential integral in Eq.(1.211) is reduced to its approximate form in
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Eq.(1.213), based on the charge density approximation in Eq.(1.212), as follows:

E =
1

4πε0

∫

S

ρs dS

R2
R̂ ≈ 1

4πε0

N∑

i=1

ρsi

∫

∆Si

dS

R2
R̂ . (P1.166)

The such obtained integrals over individual patches, ∆Si, can be evaluated ana-
lytically (exactly) for some shapes of patches or numerically (approximately) for
arbitrary surface elements. However, the simplest way (and the crudest approx-
imation) to compute these surface integrals implies approximating the integrand,
R̂/R2, by its value at the center of the patch, which results in

E ≈ 1

4πε0

N∑

i=1

ρsi

R2
i

R̂i

∫

∆Si

dS =
1

4πε0

N∑

i=1

ρsi∆Si
R2
i

R̂i =

N∑

i=1

Qi
4πε0R2

i

R̂i ,

R̂i =
Ri

Ri
(i = 1, 2, . . . , N) . (P1.167)

Essentially, the integrals are evaluated by approximating the uniformly charged
patch ∆Si by an equivalent point charge, ∆Qi = ρsi∆Si, placed at the patch center,
and using the expression for the electric field vector due to a point charge in free
space, Eq.(1.24) or (1.25). In this, Ri is the distance of the observation (field) point
(at which E is computed) from the center of the ith patch (i = 1, 2, . . . , N) and R̂i

is the corresponding unit vector, along the position vector Ri of the field point with
respect to the patch center.

(b) Computer program based on Eq.(P1.167) is provided in the associated MATLAB
exercise. The computed electric field intensity along the axis of the plate (from
Problem 1.84) perpendicular to its plane at points that are a/2, 2a, and 100a
distant from the plate surface (for N = 100) amounts to E = 635.5 mV/m, E =
82.8 mV/m, and E = 35.77 µV/m, respectively, with the vector E being along the
axis.

(c) For the Cartesian coordinate system adopted as in Fig.1.2, the electric field
vector inside the cube (from the previous problem – Problem 1.85), at a quarter of
its space diagonal (body diagonal) – point defined by x = y = z = a/4, is obtained
to be E = 20 ( x̂ + ŷ + ẑ) mV/m, while E = 0 at the cube center.

Section 1.21 Image Theory

PROBLEM 1.87 Force on a point charge due to its image. This is similar
to the computation in Eqs.(1.223) and (1.224). With reference to Fig.P1.28, the
electric force Fe on the point charge Q in Fig.1.48(a) is given by

Fe = QEimage = Q
Q

4πε0(2h)2
=

Q2

16πε0h2
(force is attractive) . (P1.168)
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46 Branislav M. Notaroš: Electromagnetics (Pearson Prentice Hall)

Q
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h
Eimage
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h

−Q

Figure P1.28 Finding the electric force on a point charge Q above a conducting
plane, in Fig.1.48(a), using image theory, as in Fig.1.48(b).

PROBLEM 1.88 Imaging a line charge. This structure is shown in
Fig.P1.29(a). By virtue of image theory, Fig.P1.29(b), the resultant electric field
intensity vector at the point M defined by a distance x from the projection of Q′

on the symmetry plane (point O) is determined, similarly to the computation in
Eqs.(1.220), as

E = Eoriginal + Eimage = 2EQ′ cosα (−n̂) ,

EQ′ =
Q′

2πε0R
, R =

√

x2 + h2 , cosα =
h

R
. (P1.169)

Using Eq.(1.190), the surface charge density at the point M on the conducting plane
in Fig.P1.29(a) amounts to [also see Eq.(1.221)]

ρs(x) = ε0n̂ · E = − Q′h

π(x2 + h2)
. (P1.170)
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Figure P1.29 Computing the distribution of induced surface charges on a con-
ducting plane underneath a line charge (Fig.1.49): (a) original structure and (b)
equivalent structure using image theory.
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P1. Solutions to Problems: Electrostatic Field in Free Space 47

PROBLEM 1.89 Charged wire parallel to a corner screen. We first elim-
inate the horizontal metallic plane in Fig.1.57 utilizing image theory, which leaves
us with two charged wires (line charges), of per-unit-length charges Q′ and −Q′,
respectively, on the right of the vertical metallic plane, which is then removed as
well by another application of image theory. The result is a structure with four
charged wires, as shown in Fig.P1.30.

O

Q'
−Q'

1

2

3

4

h

h

h h
Q' −Q'

a
M

2h

Figure P1.30 Cross section of a system of four charged metallic wires (line charges)
in free space equivalent, by virtue of image theory – applied twice, to the structure
with one charged wire parallel to a metallic corner screen in Fig.1.57.

To find the voltage between the wire and the screen in Fig.1.57, that is, the
potential of the wire with respect to the screen, which is at a zero potential, we
use Eq.(1.119) twice, for the two pairs of line charges (wires) in Fig.P1.30. More
precisely, we compute the potential at the surface (point M) of the original wire
(wire 1). First, for the pair of wires 1 and 2, we have r1 = a (distance of the
point M form the axis of that same wire equals the wire radius) and r2 = 2h (since
2h≫ a) in Eq.(1.119), which leads to

Vdue to wires 1 and 2 =
Q′

2πε0
ln
r2
r1

=
Q′

2πε0
ln

2h

a
(on the surface of wire 1) .

(P1.171)
Then, we consider the pair of wires 3 and 4 in Fig.P1.30, for which r1 = 2h (distance
between the point M, on the surface of wire 1, from the axis of wire 3) and r2 = 2h

√
2

(diagonal distance from wire 4) in Eq.(1.119), where also Q′ must be switched to
−Q′ (the upper wire is now charged with −Q′), and the corresponding potential is

Vdue to wires 3 and 4 =
−Q′

2πε0
ln

2h
√

2

2h
= − Q′

2πε0
ln
√

2 . (P1.172)

The resultant potential due to all charged wires (i.e., the voltage we seek) amounts
to

V = Vdue to wires 1 and 2 + Vdue to wires 3 and 4 =
Q′

2πε0
ln
h
√

2

a
. (P1.173)

Of course, the same result for V is obtained by the superposition of potentials
due to each of the four charged wires considered independently, which, in turn, are
calculated employing Eq.(1.87), as is done in deriving Eq.(1.119) – in the first place.
Taking the center of the structure (point O) in Fig.P1.30 for the reference point for
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potential, we thus have

V =
Q′

2πε0
ln
rR1

r1
+
−Q′

2πε0
ln
rR2

r2
+
−Q′

2πε0
ln
rR3

r3
+

Q′

2πε0
ln
rR4

r4

=
Q′

2πε0
ln
h
√

2

a
+
−Q′

2πε0
ln
h
√

2

2h
+
−Q′

2πε0
ln
h
√

2

2h
+

Q′

2πε0
ln

h
√

2

2h
√

2
=

Q′

2πε0
ln
h
√

2

a
,

(P1.174)
where rR1 = rR2 = rR3 = rR4 = h

√
2 are the distances (all the same) of the reference

point from individual wires.
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